Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Vitae (Medellín) ; 31(1): 1-8, 2024-05-03. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1538067

RESUMO

Background: Potato peel extract has demonstrated the ability to reduce platelet aggregation in vitro, suggesting its potential as a dietary intervention for preventing atherothrombotic disorders. Objective: This study aims to evaluate the impact of a potato peel-rich diet on platelet aggregation. Methods: A randomized, crossover-controlled, open two-period study was carried out with the participation of 12 healthy volunteers. Platelet aggregation was assessed before and after a seven-day dietary intervention. Participants consumed either a diet rich in potato peel (2 g/kg/d) or acetylsalicylic acid (ASA) as a reference (100 mg/d). Platelet aggregation percentages were measured following stimulation with arachidonic acid (AA, 150 µg/mL), adenosine diphosphate (ADP, 10 µM), and collagen (COL, 10 µg/mL). Results: The potato peel-rich diet resulted in a slight but significant reduction in platelet aggregation when stimulated with arachidonic acid compared to baseline values (85.0±2.0% vs. 91.3±1.7%, p<0.05). This effect was less pronounced than the reduction achieved with ASA (16±1.9%, p<0.001). Conclusion: The administration of a diet rich in potato peel reduces platelet aggregation induced by arachidonic acid, suggesting its potential role in the prevention of atherothrombotic disorders.


Introducción: El extracto de cáscara de patata ha demostrado su capacidad para reducir la agregación plaquetaria in vitro, lo que sugiere su potencial como intervención dietética para prevenir trastornos aterotrombóticos. Objetivo: Evaluar el impacto de una dieta rica en cáscara de patata en la agregación plaquetaria. Materiales y métodos: Se llevó a cabo un estudio aleatorizado, controlado, cruzado y abierto con la participación de 12 voluntarios sanos. Se evaluó la agregación plaquetaria antes y después de una intervención dietética de siete días. Los participantes consumieron una dieta rica en cáscara de patata (2 g/kg/d) o ácido acetilsalicílico (ASA) como referente (100 mg/d). Se midieron los porcentajes de agregación plaquetaria después de la estimulación con ácido araquidónico (AA, 150 µg/mL), difosfato de adenosina (ADP, 10 µM) y colágeno (COL, 10 µg/mL). Resultados: La dieta rica en cáscara de patata resultó en una ligera pero significativa reducción en la agregación plaquetaria cuando se estimuló con ácido araquidónico en comparación con los valores iniciales (85,0 ± 2,0% vs. 91,3 ± 1,7%, p <0,05). Este efecto fue menos pronunciado que la reducción lograda con ASA (16 ± 1,9%, p <0,001). Conclusión: La administración de una dieta rica en cáscara de patata reduce la agregación plaquetaria inducida por ácido araquidónico, lo que sugiere su papel potencial en la prevención de trastornos aterotrombóticos.


Assuntos
Humanos , Agregação Plaquetária , Solanum tuberosum , Ácido Clorogênico , Ácido Araquidônico , Dieta
2.
China Journal of Chinese Materia Medica ; (24): 4039-4045, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008599

RESUMO

This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.


Assuntos
Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Camundongos Transgênicos , Ácido Araquidônico , Triptofano , Camundongos Endogâmicos C57BL , Doença de Alzheimer/genética , Aprendizagem em Labirinto , Glicerofosfolipídeos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
3.
China Journal of Chinese Materia Medica ; (24): 492-506, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970486

RESUMO

This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.


Assuntos
Animais , Ratos , Ácido Araquidônico , Biomarcadores/sangue , Proteínas Sanguíneas , Cromatografia Líquida de Alta Pressão , Creatinina , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite/metabolismo , Metabolômica , Ureia , Doença Crônica , Modelos Animais de Doenças , Misturas Complexas/uso terapêutico
4.
Acta Physiologica Sinica ; (6): 864-876, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007796

RESUMO

With the acceleration of aging society, delaying aging or promoting healthy aging has become a major demand for human health. 5-Lipoxygenase (5-LOX) is a key enzyme catalyzing arachidonic acid into leukotrienes (LTs), which is a potent mediator of the inflammatory response. Previous studies showed that abnormal activation of 5-LOX and overproduction of LTs are closely related to the occurrence and development of aging-related inflammatory diseases. Therefore, inhibiting 5-LOX activation is a possibly potential strategy for treating age-related diseases. In this paper, the latest research progress in 5-LOX activation, 5-LOX in mediating aging-related diseases and its small molecule inhibitors is briefly reviewed to provide scientific theoretical basis and new ideas for the prevention and treatment of aging-related inflammatory diseases.


Assuntos
Humanos , Araquidonato 5-Lipoxigenase , Leucotrienos , Ácido Araquidônico , Envelhecimento , Inibidores de Lipoxigenase/farmacologia
5.
Chinese journal of integrative medicine ; (12): 44-51, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971324

RESUMO

OBJECTIVE@#To investigate and reveal the underlying mechanism of the effect of total saponins from Dioscoreae nipponica Makino (TSDN) on the arachidonic acid pathway in monosodium urate (MSU) crystal-induced M1-polarized macrophages.@*METHODS@#M1 polarization of RAW264.7 cells were induced by 1 µ g/mL lipopolysaccharide (LPS). The methylthiazolyldiphenyl-tetrazolium bromide method was then used to screen the concentration of TSDN. MSU (500 µ g/mL) was used to induce the gouty arthritis model. Afterwards, 10 µ g/L TSDN and 8 µ mol/L celecoxib, which was used as a positive control, were added to the above LPS and MSU-induced cells for 24 h. The mRNA and protein expressions of cyclooxygenase (COX) 2, 5-lipoxygenase (5-LOX), microsomal prostaglandin E synthase derived eicosanoids (mPGES)-1, leukotriene B (LTB)4, cytochrome P450 (CYP) 4A, and prostaglandin E2 (PGE2) were tested by real-time polymerase chain reaction and Western blotting, respectively. The enzyme-linked immunosorbent assay was used to test the contents of M1 markers, including inducible nitric oxid synthase (NOS) 2, CD80, and CD86.@*RESULTS@#TSDN inhibited the proliferation of M1 macrophages and decreased both the mRNA and protein expressions of COX2, 5-LOX, CYP4A, LTB4, and PGE2 (P<0.01) while increased the mRNA and protein expression of mPGES-1 (P<0.05 or P<0.01). TSDN could also significantly decrease the contents of NOS2, CD80, and CD86 (P<0.01).@*CONCLUSION@#TSDN has an anti-inflammation effect on gouty arthritis in an in vitro model by regulating arachidonic acid signaling pathway.


Assuntos
Ácido Úrico/metabolismo , Ácido Araquidônico/metabolismo , Dioscorea , Artrite Gotosa , Lipopolissacarídeos , Saponinas/farmacologia , Macrófagos , Transdução de Sinais , RNA Mensageiro/metabolismo
6.
China Journal of Chinese Materia Medica ; (24): 3224-3234, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981459

RESUMO

This study aims to investigate the efficacy and possible mechanism of Liuwei Dihuang Pills in the treatment of diminished ovarian reserve(DOR) by using proteomic techniques. Firstly, cyclophosphamide(60 mg·kg~(-1)) combined with busulfan(6 mg·kg~(-1)) was injected intraperitoneally to establish the mouse model of DOR. After drug injection, the mice were continuously observed and the success of modeling was evaluated by the disturbance of the estrous cycle. After successful modeling, the mice were administrated with the suspension of Liuwei Dihuang Pills by gavage for 28 days. At the end of the gavage, four female mice were selected and caged together with males at a ratio of 2∶1 for the determination of the pregnancy rate. Blood and ovary samples were collected from the remaining mice on the next day after the end of gavage. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were then employed to observe the morphological and ultrastructural changes in the ovaries. The serum levels of hormones and oxidation indicators were measured by enzyme-linked immunosorbent assay. Quantitative proteomics techniques were used to compare the ovarian protein expression before and after modeling and before and after the intervention with Liuwei Dihuang Pills. The results showed that Liuwei Dihuang Pills regulated the estrous cycle of DOR mice, elevated the serum levels of hormones and anti-oxidation indicators, promoted follicle development, protected the mitochondrial morphology of ovarian granulosa cells, and increased the litter size and survival of DOR mice. Furthermore, Liuwei Dihuang Pills negatively regulated the expression of 12 differentially expressed proteins associated with DOR, which were mainly involved in lipid catabolism, inflammatory response, immune regulation, and coenzyme biosynthesis. These differentially expressed proteins were significantly enriched in sphingolipid metabolism, arachidonic acid metabolism, ribosomes, ferroptosis, and cGMP-PKG signaling pathway. In summary, the occurrence of DOR and the treatment of DOR with Liuwei Dihuang Pills are associated with multiple biological pathways, mainly including oxidative stress response, inflammatory response, and immune regulation. "Mitochondria-oxidative stress-apoptosis" is the key to the treatment of DOR by Liuwei Dihuang Pills. YY1 and CYP4F3 may be the key upstream targets that trigger mitochondrial dysfunction and ROS accumulation, and the metabolism of arachidonic acid is the main signaling pathway of drug action.


Assuntos
Feminino , Masculino , Gravidez , Animais , Camundongos , Ácido Araquidônico , Reserva Ovariana , Proteômica , Ovário , Metabolismo dos Lipídeos
7.
China Journal of Chinese Materia Medica ; (24): 2193-2202, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981350

RESUMO

This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.


Assuntos
Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Triptofano , Ácido Araquidônico/metabolismo , Camundongos Endogâmicos C57BL , Colo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Metabolômica , Purinas/uso terapêutico , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente
8.
Chinese journal of integrative medicine ; (12): 1007-1017, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010281

RESUMO

OBJECTIVE@#To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).@*METHODS@#Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).@*RESULTS@#HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).@*CONCLUSION@#The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.


Assuntos
Ratos , Humanos , Animais , Artrite Gotosa/tratamento farmacológico , Monócitos/patologia , Interleucina-10/metabolismo , Ácido Araquidônico/farmacologia , Dioscorea/química , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Saponinas/uso terapêutico , Interleucina-4/metabolismo , Leucotrieno B4/farmacologia , Ratos Sprague-Dawley , Macrófagos , Transdução de Sinais , RNA Mensageiro/metabolismo
9.
Acta Physiologica Sinica ; (6): 657-664, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887700

RESUMO

Arachidonic acid (AA) is an ω-6 polyunsaturated fatty acid, which mainly exists in the cell membrane in the form of phospholipid. Three major enzymatic pathways including the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 monooxygenase (CYP450) pathways are involved in AA metabolism leading to the generation of a variety of lipid mediators such as prostaglandins, leukotrienes, hydroxyeicosatetraenoic acids (HETEs) and epoxyeicoastrienoic acids (EETs). These bioactive AA metabolites play an important role in the regulation of many physiological processes including the maintenance of liver glucose and lipid homeostasis. As the central metabolic organ, the liver is essential in metabolism of carbohydrates, lipids and proteins, and its dysfunction is associated with the pathogenesis of many metabolic diseases such as type 2 diabetes mellitus, dyslipidemia and nonalcoholic fatty liver disease (NAFLD). This article aims to provide an overview of the enzymatic pathways of AA and discuss the role of AA-derived lipid mediators in the regulation of hepatic glucose and lipid metabolism and their associations with the pathogenesis of major metabolic disorders.


Assuntos
Humanos , Ácido Araquidônico/metabolismo , Diabetes Mellitus Tipo 2 , Glucose/metabolismo , Homeostase , Metabolismo dos Lipídeos , Fígado
10.
Acta Physiologica Sinica ; (6): 631-645, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887698

RESUMO

Arachidonic acids (AA) widely exist in multiple organs and can be metabolized into small lipid molecules with strong biological functions through several pathways. Among them, epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE), which are produced by cytochrome P450 enzymes, have attracted a lot of attentions, especially in vascular homeostasis. The regulation of vascular function is the foundation of vascular homeostasis, which is mainly achieved by manipulating the vascular structure and biological function. In the past 30 years, the roles of EETs and 20-HETE in the regulation of vascular function have been widely explored. In this review, we discussed the effects of EETs and 20-HETE on angiogenesis and vascular inflammation, respectively. Generally, EETs can dilate blood vessels and inhibit vascular inflammation, while 20-HETE can induce vasoconstriction and vascular inflammation. Interestingly, both EETs and 20-HETE can promote angiogenesis. In addition, the roles of EETs and 20-HETE in several vascular diseases, such as hypertension and cardiac ischemia, were discussed. Finally, the therapeutic perspectives of EETs and 20-HETE for vascular diseases were also summarized.


Assuntos
Humanos , Ácido Araquidônico , Ácidos Araquidônicos , Sistema Enzimático do Citocromo P-450 , Ácidos Hidroxieicosatetraenoicos , Hipertensão , Vasoconstrição
11.
Acta Physiologica Sinica ; (6): 606-616, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887696

RESUMO

Eicosanoids are oxidized derivatives of 20-carbon polyunsaturated fatty acids (PUFAs). In recent years, the role and mechanism of eicosanoids in cardiovascular diseases have attracted extensive attention. Substrate PUFAs including arachidonic acid are metabolized by cyclooxygenase, lipoxygenase, cytochrome P450 oxidase enzymes, or non-enzymatic auto-oxidation. Eicosanoid metabolomics is an effective approach to study the complex metabolic network of eicosanoids. In this review, we discussed the biosynthesis and functional activities of eicosanoids, the strategies of eicosanoid metabolomics, and applications and research progress of eicosanoid metabolomics in cardiovascular diseases, which might offer new insights and strategies for the treatment of cardiovascular diseases.


Assuntos
Humanos , Ácido Araquidônico , Doenças Cardiovasculares , Sistema Enzimático do Citocromo P-450 , Eicosanoides , Metabolômica
12.
Acta Physiologica Sinica ; (6): 584-596, 2021.
Artigo em Inglês | WPRIM | ID: wpr-887694

RESUMO

Heart failure (HF), a clinical syndrome with high morbidity and mortality, is becoming a growing public health problem. Dilated cardiomyopathy (DCM) is one of the major causes of HF, yet the molecular mechanisms underlying DCM-mediated HF are not completely understood. Previous studies have shown that dysregulation of arachidonic acid (AA) metabolism could contribute to the development of HF. To explore the roles of microRNAs (miRNAs) in regulating AA metabolism in HF, we used two public datasets to analyze the expression changes of miRNAs in the patients of DCM-mediated HF. A total of 101 and 88 miRNAs with significant abundance alterations in the two dataset were obtained, respectively. Around 1/3 of these miRNAs were predicted to target AA metabolic pathway genes. We also investigated the distribution of known single nucleotide polymorphisms (SNPs) within the sequences of miRNAs dysregulated in DCM-mediated HF patients, and identified miRNAs harboring high number of SNPs in either the seed regions or the entire sequences. These information could provide clues for further functional studies of miRNAs in the pathogeny of DCM-mediated HF.


Assuntos
Humanos , Ácido Araquidônico , Cardiomiopatia Dilatada/genética , Insuficiência Cardíaca/genética , MicroRNAs/genética
13.
Acta Physiologica Sinica ; (6): 577-583, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887693

RESUMO

The objective of this study was to explore the roles of arachidonic acid cytochrome P450ω hydroxylase CYP4A14 in skeletal muscle regeneration after injury. Wild-type (WT) control mice and Cyp4a14 knockout (A14


Assuntos
Animais , Camundongos , Ácido Araquidônico , Citocromos , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista , Músculo Esquelético , Regeneração
14.
Acta Physiologica Sinica ; (6): 571-576, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887692

RESUMO

This study aims to explore the effects of arachidonic acid lipoxygenase metabolism in vascular calcification. We used 5/6 nephrectomy and high-phosphorus feeding to establish a model of vascular calcification in mice. Six weeks after nephrectomy surgery, vascular calcium content was measured, and Alizarin Red S and Von Kossa staining were applied to detect calcium deposition in aortic arch. Control aortas and calcified aortas were collected for mass spectrometry detection of arachidonic acid metabolites, and active molecules in lipoxygenase pathway were analyzed. Real-time quantitative PCR was used to detect changes in the expression of lipoxygenase in calcified aortas. Lipoxygenase inhibitor was used to clarify the effect of lipoxygenase metabolic pathways on vascular calcification. The results showed that 6 weeks after nephrectomy surgery, the aortic calcium content of the surgery group was significantly higher than that of the sham group (P < 0.05). Alizarin Red S staining and Von Kossa staining showed obvious calcium deposition in aortic arch from surgery group, indicating formation of vascular calcification. Nine arachidonic acid lipoxygenase metabolites were quantitated using liquid chromatography/mass spectrometry (LC-MS) analysis. The content of multiple metabolites (12-HETE, 11-HETE, 15-HETE, etc.) was significantly increased in calcified aortas, and the most abundant and up-regulated metabolite was 12-HETE. Furthermore, we examined the mRNA levels of metabolic enzymes that produce 12-HETE in calcified blood vessels and found the expression of arachidonate lipoxygenase-15 (Alox15) was increased. Blocking Alox15/12-HETE by Alox15 specific inhibitor PD146176 significantly decreased the plasma 12-HETE content, promoted calcium deposition in aortic arch and increased vascular calcium content. These results suggest that the metabolism of arachidonic acid lipoxygenase is activated in calcified aorta, and the Alox15/12-HETE signaling pathway may play a protective role in vascular calcification.


Assuntos
Animais , Camundongos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Araquidonato 12-Lipoxigenase , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico , Ácidos Hidroxieicosatetraenoicos , Lipoxigenase/metabolismo , Transdução de Sinais , Calcificação Vascular
15.
China Journal of Chinese Materia Medica ; (24): 1225-1231, 2020.
Artigo em Chinês | WPRIM | ID: wpr-1008560

RESUMO

Since the outbreak of 2019-nCoV, the epidemic has developed rapidly and the situation is grim. LANCET figured out that the 2019-nCoV is closely related to "cytokine storm". "Cytokine storm" is an excessive immune response of the body to external stimuli such as viruses and bacteria. As the virus attacking the body, it stimulates the secretion of a large number of inflammatory factors: interleukin(IL), interferon(IFN), C-X-C motif chemokine(CXCL) and so on, which lead to cytokine cascade reaction. With the exudation of inflammatory factors, cytokines increase abnormally in tissues and organs, interfering with the immune system, causing excessive immune response of the body, resulting in diffuse damage of lung cells, pulmonary fibrosis, and multiple organ damage, even death. Arachidonic acid(AA) metabolic pathway is principally used to synthesize inflammatory cytokines, such as monocyte chemotactic protein 1(MCP-1), tumor necrosis factor(TNF), IL, IFN, etc., which is closely related to the occurrence, development and regression of inflammation. Therefore, the inhibition of AA metabolism pathway is benefit for inhibiting the release of inflammatory factors in the body and alleviating the "cytokine storm". Based on the pharmacophore models of the targets on AA metabolic pathway, the traditional Chinese medicine database 2009(TCMD 2009) was screened. The potential herbs were ranked by the number of hit molecules, which were scored by pharmacophore fit value. In the end, we obtained the potential active prescriptions on "cytokine storm" according to the potential herbs in the "National novel coronavirus pneumonia diagnosis and treatment plan(trial version sixth)". The results showed that the hit components with the inhibitory effect on AA were magnolignan Ⅰ, lonicerin and physcion-8-O-β-D-glucopy-ranoside, which mostly extracted from Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, Lonicerae Japonicae Flos, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Scutellariae Radix, Gardeniae Fructus, Ginseng Radix et Rhizoma, Arctii Fructus, Dryopteridis Crassirhizomatis Rhizoma, Paeoniaeradix Rubra, Dioscoreae Rhizoma. Finally the anti-2019-nCoV prescriptions were analyzed to obtain the potential active prescriptions on AA metabolic pathway, Huoxiang Zhengqi Capsules, Jinhua Qinggan Granules, Lianhua Qingwen Capsules, Qingfei Paidu Decoction, Xuebijing Injection, Reduning Injection and Tanreqing Injection were found that may prevent 2019-nCoV via regulate cytokines. This study intends to provide reference for clinical use of traditional Chinese medicine to resist new coronavirus.


Assuntos
Humanos , Ácido Araquidônico/metabolismo , Betacoronavirus , COVID-19 , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Redes e Vias Metabólicas , Pandemias , Pneumonia Viral/imunologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
16.
Nutrition Research and Practice ; : 344-351, 2019.
Artigo em Inglês | WPRIM | ID: wpr-760613

RESUMO

BACKGROUND/OBJECTIVES: Adequate dietary fatty acid intake is important for toddlers between 12–24 months of age, as this is a period of dietary transition in conjunction with rapid growth and development; however, actual fatty acid intake during this period seldom has been explored. This study was conducted to assess the intake status of n-3 and n-6 polyunsaturated fatty acids by toddlers during the 12–24-month period using 2010–2015 Korea National Health and Nutrition Examination Survey data. SUBJECTS/METHODS: Twenty-four-hour dietary recall data of 12–24-month-old toddlers (n = 544) was used to estimate the intakes of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3), linoleic acid (LA; 18:2n-6), and arachidonic acid (AA; 20:4n-6), as well as the major dietary sources of each. The results were compared with the expected intake for exclusively breastfed infants in the first 6 months of life and available dietary recommendations. RESULTS: Mean daily intakes of ALA, EPA, DHA, LA, and AA were 529.9, 22.4, 37.0, 3907.6, and 20.0 mg/day, respectively. Dietary intakes of these fatty acids fell below the expected intake for 0–5-month-old exclusively breastfed infants. In particular, DHA and AA intakes were 4 to 5 times lower. The dietary assessment indicated that the mean intake of essential fatty acids ALA and LA was below the European and the FAO/WHO dietary recommendations, particularly for DHA, which was approximately 30% and 14–16% lower, respectively. The key sources of the essential fatty acids, DHA, and AA were soy (28.2%), fish (97.3%), and animals (53.7%), respectively. CONCLUSIONS: Considering the prevailing view of DHA and AA requirements on early brain development, there remains considerable room for improvement in their intakes in the diets of Korean toddlers. Further studies are warranted to explore how increasing dietary intakes of DHA and AA could benefit brain development during infancy and early childhood.


Assuntos
Animais , Humanos , Lactente , Ácido Araquidônico , Encéfalo , Dieta , Ácido Eicosapentaenoico , Ácidos Graxos , Ácidos Graxos Essenciais , Ácidos Graxos Insaturados , Crescimento e Desenvolvimento , Coreia (Geográfico) , Ácido Linoleico , Inquéritos Nutricionais
17.
Rio de Janeiro; s.n; 2019. xviii, 129 p. ilus.
Tese em Português | LILACS | ID: biblio-1052603

RESUMO

A malária cerebral (MC) é uma das complicações mais graves e letais da infecção por Plasmodium falciparum. O principal tratamento para a MC é o artesunato por via intravenosa, mesmo assim, 15- 25% dos pacientes tratados ainda morrem. A disfunção vascular, com vasoconstrição, leva a diminuição no fluxo sanguíneo cerebral, isquemia, hipóxia tecidual e morte na MC. O óxido nítrico (NO) e metabólitos do ácido araquidônico (AA) são importantes reguladores fisiológicos do fluxo sanguíneo cerebral por suas propriedades vasodilatadoras e vasoconstritoras. Utilizando a técnica de laser speckle com contraste de imagem nós mostramos aqui que animais infectados por Plasmodium berghei ANKA (PbA) que desenvolveram malária cerebral experimental (MCE) apresentaram marcante diminuição no fluxo sanguíneo cerebral e que a administração de L-arginina em combinação com artesunato induziu imediata reversão na isquemia cerebral a curto prazo (1 hora), mas o efeito retrocedeu 3 e 6 horas após o tratamento. O aumento no fluxo sanguíneo cerebral, mesmo que transiente, foi associado a aumentada sobrevida desses animais. L-arginina mais artesunato não foi capaz de reverter a quebra da barreira hematoencefálica presente em animais MCE. Camundongos com MCE apresentaram maior produção de metabólitos do AA com um perfil vasoconstritor, com níveis aumentados de 8-isoprostanos, 20-HETE, 14,15-DHET e níveis diminuídos de 14,15-EET, enquanto camundongos infectados por Plasmodium berghei NK65, uma cepa que não causa MC, mostraram um perfil vasodilatador, com níveis normais de 20-HETE e 14,15-DHET e aumento das concentrações de PGE2


O tratamento de animais que desenvolveram MCE com HET0016 e ozagrel diminuiu as concentrações cerebrais de 20-HETE e 8-isoprostanos, respectivamente. Apesar dos níveis de TXA2 não estarem aumentados em animais com MCE, o tratamento com ozagrel diminuiu a produção desse eicosanoide vasoconstritor no cérebro e aumentou a sobrevida de animais com MCE quando combinado com artesunato. Assim como L-arginina, ozagrel não reverteu a quebra da barreira hematoencefálica na dose testada. A produção de PGE2 no cérebro de animais com MCE não aumentou após tratamento com ozagrel. Utilizando um sistema de miografia pressurizado nós observamos que as artérias cerebrais de animais com MCE apresentaram resposta vasodilatadora dependente (estímulo com metacolina) de endotélio, bem como resposta vasoconstritora à serotonina, semelhante a resposta de artérias cerebrais de animais controles não infectados. Além disso, utilizando ensaio DAF-2 para avaliar a produção de NO, nós observamos que a produção de NO induzida por metacolina foi semelhante em artérias cerebrais oriundas de animais controles e de animais com MCE. Surpreendentemente, ao incubar artérias cerebrais de animais com MCE e de animais controles em plasma de animais com MCE, nós observamos que o plasma por si só aumentou a produção basal de NO pelas artérias de ambos os grupos. Esses resultados mostram que a disfunção vascular observada na MCE não é intrínseca do vaso já que a vasorreatividade e a produção de NO estão preservadas nas artérias cerebrais de animais com MCE, mas pode estar relacionada a um fator tecidual. Metabólitos do AA podem desempenhar um papel na disfunção cerebrovascular e a inibição da produção de eicosanoides vasoconstritores pode ser benéfica em animais com MC. (AU)


Assuntos
Humanos , Malária Cerebral , Ácido Araquidônico , Óxido Nítrico
18.
Arch. latinoam. nutr ; 68(1): 51-58, mar. 2018. tab, graf
Artigo em Inglês | LIVECS, LILACS | ID: biblio-1016810

RESUMO

The western diet is characterized by a high consumption of n-6 polyunsaturated fatty acids (PUFAs) and reduced n-3PUFAs, this phenomenon has been parallel to the increase in the prevalence of obesity. The studies that have analyzed the association between serum PUFAs and the influence on the development of adiposity in children is limited and the findings are controversial. The present study compared the ARA/EPA (arachidonic/eicosapentaenoic) PUFA ratio in children with healthy weight vs. obesity in a cross-sectional study. Thirty children were diagnosed with obesity and 32 children with healthy weight determined through the age-specific body mass index (BMI) Z score, according to the WHO. The variables included were weight, BMI, waist circumference (WC), and the serum ARA/EPA ratio. The Student's t test and Pearson correlation were performed and statistical significance was set at a p <0.05. The project was approved by the local ethics committee of the hospital Instituto Mexicano del Seguro Social. The serum ARA/EPA ratio was significantly higher in children with obesity compared with healthy weight (9.0 vs 5.4; p = 0.012). A statistically significant difference was observed between healthy weight boys and obese boys (p=0.003). Furthermore, the ARA/EPA ratio correlated positively with weight (r=0.336; p=0.008), BMI (r=0.373; p=0.003), WC (r=0.319; p=0.012) and cardio-metabolic risk (r=0.302; p=0.017). When performing a multivariate regression analysis, we identified that BMI was the only variable that remained significant and predicted the ARA/EPA ratio. In conclusion, the serum ARA/EPA ratio differed significantly in relation to weight and was higher in the obese children(AU)


La dieta occidental se caracteriza por un alto consumo de ácidos grasos poliinsaturados n-6(AGPI) y AGPIn-3 reducidos, fenómeno que ha sido paralelo al aumento en la prevalencia de la obesidad. Los estudios que han analizado la asociación entre AGPN en suero y adiposidad en niños son limitados y con hallazgos inconsistentes. El presente estudio comparó la relación ARA/EPA (ácido araquidónico/eicosapentaenoico) AGPI en niños con peso normal vs. obesidad. Es un estudio transversal donde treinta niños fueron diagnosticados con obesidad y 32 niños con peso normal determinado mediante el puntaje z del IMC para la edad, de acuerdo a la OMS. Las variables incluidas fueron peso, IMC, circunferencia de cintura (CC) y la relación ARA/EPA en suero. Se realizó prueba de t de Student y correlación de Pearson, la significación estadística se estableció en p <0,05. El proyecto fue aprobado por el comité de ética local del Hospital del Instituto Mexicano del Seguro Social. La relación ARA/EPA en suero fue significativamente mayor en niños con obesidad en comparación con el peso normal (9,0 frente a 5,4; p = 0,012). Además, la relación ARA/EPA se correlacionó positivamente con el peso (r = 0.336; p = 0.008), IMC (r = 0.373; p = 0.003), CC (r = 0.319; p = 0.012). Al realizar un análisis de regresión multivariable, identificamos que el IMC fue la variable predictora que permaneció significativa. En conclusión, la relación de suero ARA/EPA fue significativamente mayor en los niños con obesidad(AU)


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Índice de Massa Corporal , Ácido Eicosapentaenoico/análise , Ácido Araquidônico/análise , Obesidade/fisiopatologia , Pesos e Medidas Corporais , Antropometria , Dieta Hiperlipídica
19.
Acta Physiologica Sinica ; (6): 591-599, 2018.
Artigo em Inglês | WPRIM | ID: wpr-777226

RESUMO

Kidney diseases are important causes of mortality world widely. Renal microvascular dysfunction plays a pivotal role in the development of kidney diseases. Pharmacological and biochemical tools have been used to conduct detailed studies on the metabolization of arachidonic acid by cytochrome P450 (CYP450) in renal microvasculature. CYP450 epoxygenase metabolites epoxyeicosatrienoic acids (EETs) are mainly produced in renal microvessels. EETs exhibit renoprotective effects through vasodilation, anti-hypertension, anti-apoptosis and anti-inflammation, and were reported as therapeutic targets of renal diseases. However, the ability of the kidney in generating EETs is reduced in renal diseases. Recently, the studies from transgenic animal overexpressing CYP450 epoxygenases and application of soluble epoxide hydrolase inhibitors revealed that increasing of EETs exhibits renoprotective effects in vivo. The present review focuses on the protective mechanisms of EETs in kidney physiology and diseases.


Assuntos
Animais , Humanos , Animais Geneticamente Modificados , Ácido Araquidônico , Metabolismo , Sistema Enzimático do Citocromo P-450 , Fisiologia , Modelos Animais de Doenças , Inflamação , Rim , Fisiologia , Nefropatias , Vasodilatação
20.
Asia Pacific Allergy ; (4): e38-2018.
Artigo em Inglês | WPRIM | ID: wpr-750158

RESUMO

Nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity reactions (HSRs) are often nonimmunologically mediated reactions which present with immediate HSR type manifestations. These are mediated by cyclooxygenase inhibition resulting in shunting towards the excessive production of leukotrienes. Important disease associations include asthma, nasal polyposis, and chronic spontaneous urticaria, especially among adults. The European Network on Drug Allergy/Global Allergy and Asthma European Network 2013 classification of NSAID HSR comprises nonselective HSR i.e., NSAID exacerbated respiratory disease (NERD), NSAIDs exacerbated cutaneous disease (NECD), NSAIDs induced urticarial-angioedema (NIUA); and selective (allergic) HSR i.e., single NSAID induced urticaria/angioedema or anaphylaxis, NSAIDs-induced delayed HSR. Much of the literature on genetic associations with NSAID HSR originate from Korea and Japan; where genetic polymorphisms have been described in genes involved in arachidonic acid metabolism, basophil/mast cell/eosinophil activation, various inflammatory mediators/cytokines, and different HLA genotypes. The Asian phenotype for NSAID HSR appears to be predominantly NIUA with overlapping features in some adults and children. NECD also appears to be more common than NERD, although both are not common in the Asian paediatric population. Between adults and children, children seem to be more atopic, although over time when these children grow up, it is likely that the prevalence of atopic adults with NSAID HSR will increase. Low-dose aspirin desensitization has been shown to be effective in the treatment of coronary artery disease, especially following percutaneous coronary intervention.


Assuntos
Adulto , Criança , Humanos , Anafilaxia , Anti-Inflamatórios não Esteroides , Ácido Araquidônico , Povo Asiático , Aspirina , Asma , Classificação , Doença da Artéria Coronariana , Hipersensibilidade a Drogas , Genótipo , Hipersensibilidade , Japão , Coreia (Geográfico) , Leucotrienos , Metabolismo , Intervenção Coronária Percutânea , Fenótipo , Polimorfismo Genético , Prevalência , Prostaglandina-Endoperóxido Sintases , Urticária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA