Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Rev. invest. clín ; 58(4): 350-358, jul.-ago. 2006. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-632371

RESUMO

Peroxynitrite (ONOO-) is a reactive nitrogen specie produced by the reaction between nitric oxide (NO• ) and super-oxide anion (O2.-). NO• is produced by nitric oxide synthase (NOS) and O2.- is formed by the addition of an electron to O2 in enzymatic as well as nonenzymatic way. NADPH oxidase and xanthine oxidase are some of the enzymes involved in O2.-formation. ONOO- is an oxidant specie which is able to modify a great number of biomolecules such as aminoacids, proteins, enzymes and cofactors. ONOO - is able to induce nitration leading to the formation of 3-nytrotyrosine. This change has been widely studied, and although it is not only produced by ONOO-, but also by other reactive nitrogen species, it has been accepted like footprint of ONOO-. The excessive production of reactive nitrogen species is known as nitrosative stress that is able to induce structural damage leading to the loss of cell function. Furthermore, synthetic metalloporphyrins that metabolize ONOO- in a specific way are being used to determine if ONOO- is involved in different diseases, such as Alzheimer, Huntington, diabetes, hypertension, arthritis, colitis, cardiac and renal complications. Finally, these metalloporphyrins may be of potential therapeutic value in diseases related to ONOO- production.


El peroxinitrito (ONOO-) es una especie reactiva de nitrógeno formada por la reacción entre el óxido nítrico (NO•) y el anión superóxido (O2.- ). El NO' es sintetizado por la sintasa de óxido nítrico (NOS) y el O2•- se puede sintetizar de forma no enzimática, por la adición de un electrón al O2 o por medio de diversas enzimas como la NADPH oxidasa y la xantina oxidasa. El ONOO-es una especie oxidante capaz de modificar un gran número de biomoléculas entre las que se encuentran aminoácidos, proteínas, enzimas y cofactores de enzimas. El ONOO- puede inducir nitración de residuos de tirosina promoviendo la formación de 3-nitrotirosina (3-NT). Esta modificación ha sido muy estudiada y aunque no es producida exclusivamente por ONOO- sino también por otras especies reactivas de nitrógeno, se acepta actualmente como una evidencia de la formación de ONOO-. El aumento excesivo de este último, así como de otras especies reactivas de nitrógeno se conoce como estrés nitrosativo y puede causar daño estructural alterando la funcionalidad de las células. Por otra parte, se han desarrollado una serie de metaloporfirinas que descomponen específicamente al ONOO- y éstas han ayudado a determinar que el ONOO - es una especie implicada en enfermedades como Alzheimer, Huntington, diabetes, hipertensión, artritis, colitis y diversas complicaciones cardiacas y renales. Además, estas metaloporfirinas pueden ser de utilidad terapéutica en aquellas enfermedades asociadas a la producción de ONOO-.


Assuntos
Humanos , Ácido Peroxinitroso/metabolismo , Sequestradores de Radicais Livres/metabolismo , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Superóxidos/metabolismo
2.
Mem. Inst. Oswaldo Cruz ; 100(supl.1): 29-37, Mar. 2005. ilus
Artigo em Inglês | LILACS | ID: lil-402173

RESUMO

Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.


Assuntos
Animais , Humanos , Dano ao DNA , Complicações do Diabetes/etiologia , Estresse Oxidativo/fisiologia , Ácido Peroxinitroso/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Complicações do Diabetes/metabolismo , Ativação Enzimática , Poli(ADP-Ribose) Polimerases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA