Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Radiology ; : 365-371, 2007.
Artigo em Inglês | WPRIM | ID: wpr-174913

RESUMO

OBJECTIVE: We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. MATERIALS AND METHODS: The hNSCs (5x105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 microgram/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. RESULTS: The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15+/-0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. CONCLUSION: For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL.


Assuntos
Humanos , Células Cultivadas , Meios de Contraste/síntese química , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Óxido Ferroso-Férrico/síntese química , Produtos do Gene tat/química , Ferro/farmacocinética , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Tubo Neural , Óxidos/farmacocinética , Imagens de Fantasmas , Polilisina/farmacocinética , Espectrofotometria Atômica , Coloração e Rotulagem/métodos , Células-Tronco/citologia , Fatores de Tempo , Transfecção
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 59-61, 2005.
Artigo em Inglês | WPRIM | ID: wpr-634225

RESUMO

The nano-magnetic ferrofluid was prepared by chemical coprecipitation and its acute toxicology was investigated. The effective diameter (Eff. Diam. ) of the magnetic particles was about 19.9 nm, and the concentration of the ferrofluid was 17. 54 mg/ml. The acute toxic reaction and the main viscera pathological morphology of mice were evaluated after oral, intravenous and intraperitoneal administration of the nano-magnetic ferrofluid of different doses respectively. Half lethal dose (LD50) > 2104. 8 mg/kg,maximum non-effect dose (ED0) = 320. 10mg/kg with oral; LDs,> 438. 50 mg/kg, EDo = 160. 05 mg/kg with intravenous route; and LDso >1578. 6 mg/kg, ED0 = 320. 10 mg/kg with intraperitoneal administration. Degeneration and necrosis of viscera were not found. So the nano-magnetic ferrofluid, of which toxicity is very low, may be used as a drug carrier.


Assuntos
Óxido Ferroso-Férrico/síntese química , Óxido Ferroso-Férrico/toxicidade , Magnetismo , Nanoestruturas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA