Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Clinics ; 70(10): 706-713, Oct. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-762958

RESUMO

OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL), particulate matter 2.5 µm 0.1 mg/mL (PM0.1) or 3.0 mg/mL (PM3.0) and amphibian Ringer’s solution (control). Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.


Assuntos
Animais , Depuração Mucociliar , Muco , Material Particulado/química , Material Particulado/toxicidade , Aço/química , Anuros , Cílios , Epitélio , Cromatografia Gasosa-Espectrometria de Massas , Muco/química , Palato/citologia , Espectrometria por Raios X
2.
Journal of Advanced Research. 2013; 4 (1): 83-92
em Inglês | IMEMR | ID: emr-150829

RESUMO

While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: [1] sheets are fully bonded; and [2] metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength-ductility combination that is essential for metal forming applications


Assuntos
Aço/química , Terapia com Luz de Baixa Intensidade , Aço/análise
3.
Indian J Exp Biol ; 2003 Sep; 41(9): 1023-9
Artigo em Inglês | IMSEAR | ID: sea-57504

RESUMO

Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted.


Assuntos
Bactérias/metabolismo , Biofilmes , Corrosão , Eletroquímica , Microbiologia Industrial , Aço/química
4.
Rev. microbiol ; 30(3): 177-90, jul.-set. 1999. ilus, tab, graf
Artigo em Português, Inglês | LILACS | ID: lil-253771

RESUMO

Biocorrosion processes at metal surface are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect catholic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mössbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed


Assuntos
Metais/química , Cobre/metabolismo , Cobre/química , Metais/metabolismo , Aço/química , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA