Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 53: 54-54, 2020. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1505780

RESUMO

BACKGROUND: UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS: A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS: The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.


Assuntos
Raios Ultravioleta , Citoesqueleto de Actina/fisiologia , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Proteínas Cromossômicas não Histona , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis
2.
Braz. j. med. biol. res ; 34(5): 567-575, May 2001. ilus
Artigo em Inglês | LILACS | ID: lil-285870

RESUMO

We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants


Assuntos
Animais , Aminoácidos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Glutamato-Amônia Ligase/metabolismo , Luz , Nitrogênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Aspartato-Amônia Ligase/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Genéticos , Receptores de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA