Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 46(2): 415-424, Apr-Jun/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-749732

RESUMO

Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w) - by Pleurotus ostreatus (BWPH and MB), Gloeophyllum odoratum (DCa), RWP17 (Polyporus picipes) and Fusarium oxysporum (G1) was studied. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus) were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH), which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the elimination of dye mixture was the best.


Assuntos
Animais , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Azul Evans/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Corantes de Rosanilina/metabolismo , Águas Residuárias/microbiologia , Araceae/efeitos dos fármacos , Araceae/fisiologia , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Azul Evans/toxicidade , Corantes de Rosanilina/toxicidade , Purificação da Água/métodos
2.
Experimental & Molecular Medicine ; : 121-128, 2011.
Artigo em Inglês | WPRIM | ID: wpr-186261

RESUMO

Blood cells are transported into the brain and are thought to participate in neurodegenerative processes following hypoxic ischemic injury. We examined the possibility that transient forebrain ischemia (TFI) causes the blood-brain barrier (BBB) to become permeable to blood cells, possibly via dysfunction and degeneration of endothelial cells in rats. Extravasation of Evans blue and immunoglobulin G (IgG) was observed in the hippocampal CA1-2 areas within 8 h after TFI, and peaked at 48 h. This extravasation was accompanied by loss of tight junction proteins, occludin, and zonula occludens-1, and degeneration of endothelial cells in the CA1-2 areas. Iron overload and mitochondrial free radical production were evident in the microvessel endothelium of the hippocampus before endothelial cell damage occurred. Administration of deferoxamine (DFO), an iron chelator, or Neu2000, an antioxidant, blocked free radical production and endothelial cell degeneration. Our findings suggest that iron overload and iron-mediated free radical production cause loss of tight junction proteins and degeneration of endothelial cells, opening of the BBB after TFI.


Assuntos
Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Radicais Livres/metabolismo , Hipocampo/metabolismo , Ferro/metabolismo , Ataque Isquêmico Transitório/patologia , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley
3.
Indian J Med Microbiol ; 2006 Apr; 24(2): 85-91
Artigo em Inglês | IMSEAR | ID: sea-53631

RESUMO

No data exists on the activity of biocides (antiseptics and disinfectants) on Rhinosporidium seeberi that causes rhinosporidiosis in humans and animals. On account of the inability to culture R. seeberi, in vitro, dyes were used to assess the morphological integrity and viability of biocide-treated endospores that are considered to be the infective stage of this pathogen. Evan's Blue (EvB) identifies the morphological integrity of the endospores while MTT (3-[4, 5-dimethylthiazol-2yl]-2, 5-diphenyl tetrazolium bromide) identifies metabolic activity through its reduction by cellular dehydrogenases to microscopically visible deposits of insoluble formazan. MTT-negativity has earlier been shown to correlate with absence of growth of yeast and mycelial fungi in culture and could thus indicate the loss of viability of MTT-negative rhinosporidial endospores. Hydrogen peroxide, glutaraldehyde, chloroxylenol, chlorhexidine, cetrimide, thimerosal, 70% ethanol, iodine in 70% ethanol, 10% formalin, povidone-iodine, sodium azide and silver nitrate were tested on freshly-harvested endospores and all biocides caused metabolic inactivation with or without altered structural integrity as shown by absence of MTT-staining after 3, 24 or 36 hour after exposure, while EvB stained only the endospores treated with sodium azide, ethanol, thimerosal, chloroxylenol, glutaraldehyde and hydrogen peroxide. With clinically useful biocides - chlorhexidine, cetrimide-chlorhexidine, 70% ethanol, povidone-iodine and silver nitrate, a total period of exposure of endospores to the biocide, for seven minutes, produced metabolic inactivation of the endospores. Anti-rhinosporidial antiseptics that could be used in surgery on rhinosporidial patients include povidone-iodine in nasal packs for nasal and naso-pharyngeal surgery, chlorhexidine and cetrimide-chlorhexidine on the skin, while povidone-iodine and silver nitrate could have application in ocular rhinosporidiosis.


Assuntos
Animais , Anti-Infecciosos Locais/farmacologia , Desinfetantes/farmacologia , Azul Evans/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Rinosporidiose/parasitologia , Rhinosporidium/efeitos dos fármacos , Esporos de Protozoários/efeitos dos fármacos , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA