Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 2126-2138, 2020.
Artigo em Chinês | WPRIM | ID: wpr-878472

RESUMO

Development of "liquid sunshine" could be a key technology to deal with the issue of fossil fuel depletion. β-caryophyllene is a terpene compound with high energy density and has attracted attention for its potential application as a jet fuel. The high temperature and high light-tolerant photosynthetic cyanobacterium Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), whose doubling time is as short as 1.5 h, has great potential for synthesizing β-caryophyllene using sunlight and CO₂. In this study, a production of ~121.22 μg/L β-caryophyllene was achieved at 96 h via a combined strategy of pathway construction, key enzyme optimization and precursor supply enhancement. In addition, a final production of ~212.37 μg/L at 96 h was realized in a high-density cultivation. To our knowledge, this is the highest production reported for β-caryophyllene using cyanobacterial chassis and our study provide important basis for high-density fuel synthesis in cyanobacteria.


Assuntos
Biocombustíveis/microbiologia , Dióxido de Carbono/metabolismo , Luz , Fotossíntese , Synechococcus/efeitos da radiação
2.
Electron. j. biotechnol ; 41: 13-21, sept. 2019. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1053560

RESUMO

Background: Sugars from sweet sorghum stalks can be used to produce ethanol and also to grow oleaginous yeasts. Instead of two separate processes, in this paper we propose a different route producing ethanol and microbial oil in two consecutive fermentation steps. Results: Three yeasts were compared in the first ethanol producing step. In the second step four different oleaginous yeasts were tested. Sweet sorghum juice was first clarified and concentrated. High gravity ethanol fermentation was carried out with concentrated juice with 23.7 g/100 mL of total sugars and without added nutrients. Total sugars were 2.5 times more than the original clarified juice. One yeast gave the best overall response over the two other tested; relative high ethanol productivity, 1.44 g ethanol/L•h−1 , and 90% of sugar consumption. Aeration by flask agitation produced superior results than static flasks for all yeasts. Microbial oil production was done employing the residual liquid left after ethanol separation. The pooled residual liquid from the ethanol distillation contained 7.08 g/mL of total carbohydrates, rich in reducing sugars. Trichosporon oleaginosus and Lipomyces starkeyi produced higher dry biomass, total sugar consumption and oil productivity than the other two oleaginous yeasts tested; with values around 25 g/L, 80%, and 0.55 g oil/L•h−1 respectively. However, the biomass oil content in all yeasts was relatively low in the range of 14 to 16%. Conclusion: The two step process is viable and could be considered an integral part of a consolidated biorefinery from sweet sorghum.


Assuntos
Sorghum/química , Etanol/metabolismo , Sucos de Frutas e Vegetais , Saccharomyces cerevisiae , Leveduras , Trichosporon , Açúcares , Sucos , Lipomyces , Biocombustíveis/microbiologia , Fermentação
3.
Braz. j. microbiol ; 48(4): 648-655, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889169

RESUMO

ABSTRACT Producing biofuels such as ethanol from non-food plant material has the potential to meet transportation fuel requirements in many African countries without impacting directly on food security. The current shortcomings in biomass processing are inefficient fermentation of plant sugars, such as xylose, especially at high temperatures, lack of fermenting microbes that are able to resist inhibitors associated with pre-treated plant material and lack of effective lignocellulolytic enzymes for complete hydrolysis of plant polysaccharides. Due to the presence of residual partially degraded lignocellulose in the gut, the dung of herbivores can be considered as a natural source of pre-treated lignocellulose. A total of 101 fungi were isolated (36 yeast and 65 mould isolates). Six yeast isolates produced ethanol during growth on xylose while three were able to grow at 42 °C. This is a desirable growth temperature as it is closer to that which is used during the cellulose hydrolysis process. From the yeast isolates, six isolates were able to tolerate 2 g/L acetic acid and one tolerated 2 g/L furfural in the growth media. These inhibitors are normally generated during the pre-treatment step. When grown on pre-treated thatch grass, Aspergillus species were dominant in secretion of endo-glucanase, xylanase and mannanase.


Assuntos
Animais , Etanol/metabolismo , Fungos/isolamento & purificação , Fungos/metabolismo , Esterco/microbiologia , Biocombustíveis/análise , Biocombustíveis/microbiologia , Fermentação , Fungos/classificação , Fungos/genética , Herbivoria , Lignina/metabolismo , Esterco/análise , Plantas/metabolismo , Xilose/metabolismo
4.
An. acad. bras. ciênc ; 89(3,supl): 2021-2031, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886773

RESUMO

ABSTRACT The present study evaluated the effects of the culturing media and the levels of nitrogen and phosphorus on the growth, biomass productivity and lipid production of four species of Microcystis (M. novacekii, M. aeruginosa, M panniformis and M. protocystis). The lipid extract was obtained by refluxing with dichloromethane (Soxhlet). The biomass and biomass productivity yields were maximized with ASM-1 medium treatment enriched with nitrogen and/or phosphorus (0.25-0.65 g/L and 25-50.7 mg/L d-1, respectively). The lipid extract yields from M. panniformis and M. novacekii were inversely correlated with the concentration of nitrogen and directly correlated with the concentration of phosphorus (35.8 % and 31.7 %). The lipid extract yield from M. aeruginosa was inversely correlated with the nutrient concentration (23.3 %). M. protocystis exhibited a higher lipid content in the control medium (41.5 %) than in the nitrogen-enriched media. The recorded results show that a nutrient-poor culture medium favours cell growth and stimulates lipid accumulation, which directly affects the cost of cultivation by reducing nutrient consumption. All studied species may serve as biomass sources for biodiesel production, although M. protocystis exhibited the highest lipid production. Further studies are necessary to determine the composition of the recorded lipid extract.


Assuntos
Biocombustíveis/microbiologia , Lipídeos/biossíntese , Fósforo/metabolismo , Cianobactérias/química , Biomassa , Meios de Cultura/farmacologia , Nitrogênio/metabolismo
5.
Braz. j. biol ; 75(3): 541-547, Aug. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-761593

RESUMO

AbstractThe introduction of biodiesel to diesel may allow the fuel to be more susceptible to microorganism growth, especially during incorrect storage. To evaluate the effect of adding biodiesel in pure diesel on the growth of Paecilomyces variotii, microcosms containing pure diesel (B0), blend diesel/biodiesel (B7) and pure biodiesel (B100) were used. In microcosm with minimal mineral medium and B0, B7 or B100, after 60 days, the biomass (dry weight) formed at interface oil-water in B7 and B100 was significantly higher when compared to that of B0. Infrared analysis showed reduction of the carbonile fraction in B7 and B100 suggesting formation of intermediate compounds in B7. To monitor possible contamination of fuel storage tank by P. variotii samples were collected and analysed by specific-PCR assay for detection of P. variotii spores in the aqueous phase. This method was able to detect a minimum of 103 spores ml–1, corresponding to 0.0144 ng µl–1 of DNA. Specificity was tested against Aspergillus fumigatus and Pseudallescheria boydii.


ResumoA introdução de biodiesel ao diesel pode permitir que o combustível se torne mais suscetível ao crescimento de microorganismos, especialmente durante o armazenamento incorreto. Para analisar o efeito da adição de biodiesel em diesel puro no crescimento de Paecilomyces variotii, avaliou-se seu desenvolvimento em microcosmos contendo diesel puro (B0), mistura diesel/biodiesel (B7) e biodiesel puro (B100). Em microcosmos com meio mineral mínimo e B0, B7 ou B100, após 60 dias, a biomassa (peso seco) formada na interface óleo-agua com B7 e B100 foi significativamente maior quando comparada com a de B0. A análise de infravermelho mostrou redução da fração carbonila em B7 e B100, sugerindo a formação de compostos intermediários em B7. Para monitorar uma possível contaminação de tanque de armazenamento de combustível por P. variotii, amostras foram colhidas e analisadas por um teste de PCR específico para detecção de esporos deste fungo em fase aquosa. Este método foi capaz de detectar um mínimo de 103 esporos ml–1, correspondente a 0.0144 ng µl–1 de DNA. Especificidade foi testada contra Aspergillus fumigatus e Pseudallescheria boydii.


Assuntos
Biocombustíveis/microbiologia , Gasolina/microbiologia , Paecilomyces/crescimento & desenvolvimento , Glycine max/química , Paecilomyces/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA