Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 42: 16-22, Nov. 2019. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1087350

RESUMO

Background: Fuels and chemicals from renewable feedstocks have a growing demand, and acetone, butanol and ethanol (ABE) are some relevant examples. These molecules can be produced by the bacterial fermentation process using hydrolysates generated from lignocellulosic biomass as sugarcane bagasse, one of the most abundant sources of lignocellulosic biomass in Brazil. It originates as a residue in mills and distilleries in the production of sugar and ethanol. Results: In the present work, two strategies to generate hydrolysates of sugarcane bagasse were adopted. The fermentation of the first hydrolysate by Clostridium acetobutylicum DSM 6228 resulted in final concentrations of butanol, acetone and ethanol of 6.4, 4.5 and 0.6 g/L, respectively. On the other hand, the second hydrolysate presented better results (averages of 9.1, 5.5 and 0.8 g/L, respectively), even without the need for nutrient supplementation, since key elements were already present in the medium. The productivity (QP) and yield (YP/S) of the solvents with second hydrolysate were 0.5 g/L•h-1 and 0.4 g/g, respectively. Conclusions: The results described herein open new perspectives for the production of important molecules from residual lignocellulosic biomass for the fuel and chemical industries within the context of second-generation biorefinery.


Assuntos
Acetona/metabolismo , Celulose/metabolismo , Saccharum/metabolismo , Etanol/metabolismo , Butanóis/metabolismo , Brasil , Celulose/química , Saccharum/química , Clostridium acetobutylicum/metabolismo , Biocombustíveis , Fermentação
2.
Electron. j. biotechnol ; 30: 58-63, nov. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021458

RESUMO

Background: Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids. Results: First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields. Conclusion: It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Butanóis/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo , Seleção Genética , Temperatura , Ácido Eicosapentaenoico/metabolismo , Biomassa , Butanóis/toxicidade , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Estramenópilas/efeitos dos fármacos , Fermentação , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA