Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Rev. méd. Chile ; 150(1): 88-92, ene. 2022. ilus
Artigo em Espanhol | LILACS | ID: biblio-1389622

RESUMO

D. Julius was awarded the 2021 Medicine Nobel prize for the discovery of new cationic channels that detect temperatures either over 40 °C (TRPV1) or cold (TRPM8) ranging from 8-15 °C, followed by the latter identification of other channels that sense temperatures within other ranges. On the other hand, A. Patapoutian shared the 2021 Nobel prize for the independent and simultaneous co-discovery of the TRPM8 cationic channel. Furthermore, Patapoutian iden-tified piezo 1 and 2 channels previously referred to as the cell mechanosensors related to the sense of touch and proprioception. These experimental findings indicate that these novel cationic channels localized in nerve endings of the skin, mouth, lips, bronchial tree, the nephron, plus a variety of tissues transduce phy-sical stimuli into electrical activity that reach the brain sensory cortex to process these stimuli and elicit animal behavior.


Assuntos
Animais , Canais de Cátion TRPM/fisiologia , Pele , Temperatura , Temperatura Baixa , Prêmio Nobel
2.
Journal of Zhejiang University. Science. B ; (12): 972-982, 2019.
Artigo em Inglês | WPRIM | ID: wpr-1010505

RESUMO

As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2-S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2-S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2-S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2-S3 loop of TRPM2 on the TRPM2 gating process.


Assuntos
Animais , Humanos , Asparagina/fisiologia , Sítios de Ligação , Cálcio/metabolismo , Glutamina/fisiologia , Células HEK293 , Ativação do Canal Iônico/fisiologia , Anêmonas-do-Mar , Canais de Cátion TRPM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA