Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Medicina (B.Aires) ; 79(4): 303-314, ago. 2019. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1040528

RESUMO

Los canales de cloruros, de sodio, de bicarbonato y los de agua (aquaporinas) se coordinan para mantener la cubierta líquido superficial de las vías respiratorias, que es necesaria para el aclaramiento mucociliar. El mecanismo general para el transporte de electrolitos y agua depende principalmente de la expresión diferencial y distribución de los transportadores y bombas de iones. Los iones y el agua se mueven a través de las vía paracelular o transcelular. La ruta transcelular del transporte de electrolitos requiere un transporte activo (dependiente de ATP) o pasivo (siguiendo gradientes electroquímicos) de iones. La ruta paracelular es un proceso pasivo que está controlado, en última instancia, por los gradientes electroquímicos transepiteliales predominantes. La fibrosis quística es una enfermedad hereditaria que se produce por mutaciones en el gen que codifica la proteína reguladora de la conductibilidad transmembrana de la fibrosis quística (CFTR) que actúa como un canal de cloro y cumple funciones de hidratación del líquido periciliar y mantenimiento del pH luminal. La disfunción del canal de cloro en el epitelio respiratorio determina una alteración en las secreciones bronquiales, con aumento de su viscosidad y alteración de la depuración mucociliar y que asociado a procesos infecciosos puede conducir a daño pulmonar irreversible. La disfunción del CFTR, también se ha visto implicado en la patogénesis de la pancreatitis aguda, en la enfermedad pulmonar obstructiva crónica y la hiperreactividad en el asma. Existen fármacos que aprovechan los mecanismos fisiológicos en el transporte de iones, con un objetivo terapéutico.


The chloride channels, sodium and bicarbonate channels, and aquaporin water channels are coordinated to maintain the airway surface liquid that is necessary for mucociliary clearance. The general mechanism for the transport of electrolytes and fluids depends mainly on the differential expression and distribution of ion transporters and pumps. Ions and water move through the paracellular or transcellular pathways. The transcellular route of electrolyte transport requires an active transport (dependent on ATP) or passive (following electrochemical gradients) of ions. The paracellular pathway is a passive process that is ultimately controlled by the predominant transepithelial electrochemical gradients. Cystic fibrosis is a hereditary disease that is produced by mutations in the gene that encode cystic fibrosis transmembrane conductance regulatory protein (CFTR) that acts as a chloride channel and performs functions of hydration of periciliary fluid and maintenance of luminal pH. The dysfunction of the chlorine channel in the respiratory epithelium determines an alteration in the bronchial secretions, with an increase in its viscosity and alteration of the mucociliary clearance and that associated with infectious processes can lead to irreversible lung damage. CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease, and bronchial hyperreactivity in asthma. There are drugs that exploit physiological mechanisms in the transport of ions with a therapeutic objective.


Assuntos
Humanos , Transporte Biológico Ativo/fisiologia , Depuração Mucociliar/fisiologia , Transporte de Íons/fisiologia , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Canais de Cloreto/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/fisiopatologia
2.
Braz. j. med. biol. res ; 42(2): 155-163, Feb. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-506881

RESUMO

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.


Assuntos
Animais , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Osso e Ossos/enzimologia , Sistema Nervoso Central/enzimologia , Canais de Cloreto/fisiologia , Rim/enzimologia , Fígado/enzimologia , ATPases Vacuolares Próton-Translocadoras/fisiologia
3.
Braz. j. med. biol. res ; 34(3): 315-323, Mar. 2001. ilus, tab
Artigo em Inglês | LILACS | ID: lil-281611

RESUMO

Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients


Assuntos
Humanos , Masculino , Feminino , Animais , Canais de Cloreto/fisiologia , Cálculos Renais/genética , Rim/metabolismo , Nefrocalcinose/genética , Cálcio/urina , Endocitose , Ligação Genética , Rim/fisiopatologia , Minerais/metabolismo , Mutação , Fatores Sexuais , Síndrome , Cromossomo X
4.
Braz. j. med. biol. res ; 32(8): 1021-8, Aug. 1999.
Artigo em Inglês | LILACS | ID: lil-238972

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90 percent of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs)


Assuntos
Humanos , Canais de Cloreto/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética
6.
Braz. j. med. biol. res ; 30(8): 1033-44, Aug. 1997. ilus
Artigo em Inglês | LILACS | ID: lil-197262

RESUMO

The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes.


Assuntos
Animais , Permeabilidade da Membrana Celular/fisiologia , Canais de Cloreto/fisiologia , Técnicas In Vitro , Potássio , Bufo marinus , Resposta Galvânica da Pele , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA