Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1887-1899, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887770

RESUMO

Plant serine carboxypeptidase-like acyltransferases (SCPL-AT) have similar structural characteristics and high homology compared to the serine carboxypeptidase. They can transfer the acyl from acyl glucose esters to many natural products, participate in the acylation modification of plant secondary metabolites, enrich the structural diversity of natural products, and improve the physicochemical properties such as water solubility and stability of compounds. This review summarizes the structural characteristics, catalytic mechanism, functional characterization, and biocatalytic applications of SCPL-AT from plants. This will help to promote the functional characterization of these acyltransferase genes and the biosynthesis of useful plant secondary metabolites by synthetic biotechnology.


Assuntos
Acilação , Aciltransferases/metabolismo , Carboxipeptidases/metabolismo , Plantas/enzimologia
2.
Indian J Biochem Biophys ; 2008 Aug; 45(4): 237-43
Artigo em Inglês | IMSEAR | ID: sea-28111

RESUMO

The cells of Synechocystis sp. PCC 6803 were subjected under photoinhibitory irradiation (600 micromolm(-2)s(-1)) at various temperatures (20-40 degrees C) to study in vivo quality control of photosystem II (PSII). The protease biogenesis and its consequences on photosynthetic efficiency (chlorophyll fluorescence ratio Fv/Fm) of the PSII, D1 degradation and repair were monitored during illumination and darkness. The loss in Fv/Fm value and degradation of D1 protein occurred not only under high light exposure, but also continued when the cells were subjected under dark restoration process after high light exposure. No loss in Fv/Fm value or D1 degradation occurred during recovery under growth/low light (30 micromol m(-2) s(-1)). Further, it helped the resynthesis of new D1 protein, essential to sustain quality control of PSII. In vivo triggering of D1 protein required high light exposure to switch-on the protease biosynthesis to maintain protease pool which induced temperature-dependent enzymatic proteolysis of photodamaged D1 protein during photoinhition and dark incubation. Our findings suggested the involvement and overexpression of a membrane-bound FtsH protease during high light exposure which caused degradation of D1 protein, strictly regulated by high temperature (30-40 degrees C). However, lower temperature (20 degrees C) prevented further loss of photoinhibited PSII efficiency in vivo and also retarded temperature-dependent proteolytic process of D1 degradation.


Assuntos
Carboxipeptidases/metabolismo , Clorofila/metabolismo , Cianobactérias/metabolismo , Escuridão , Eletroforese em Gel de Poliacrilamida , Fluorescência , Temperatura Alta , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Pró-Proteína Convertases/metabolismo , Controle de Qualidade , Synechocystis/metabolismo , Fatores de Tempo
3.
Indian J Biochem Biophys ; 1998 Jun; 35(3): 148-56
Artigo em Inglês | IMSEAR | ID: sea-26391

RESUMO

Butyrylcholinesterase (BChE) was purified from monkey serum and the catalytic activities were examined. The enzyme has a molecular mass of approximately equal to 74 kDa as seen by SDS-gel electrophoresis. Monkey serum BChE also exhibits an amine sensitive aryl acylamidase (AAA) and a metallocarboxypeptidase activity. The tyramine activation of the aryl acylamidase activity and the metal chelator inhibition of the peptidase activity were characteristics similar to those of the human enzyme. Studies on 65Zn2+ binding and zinc chelate Sepharose chromatography showed that monkey serum BChE and human serum BChE have similar characteristics. Limited alpha chymotrypsin digestion of monkey serum BChE followed by Sephadex gel chromatography cleaved the enzyme into a 36 kDa fragment exhibiting peptidase activity. However the 20 kDa fragment corresponding to cholinesterase and aryl acylamidase activity was not detectable possibly due to the unstable nature of the fragment. Immunological studies showed that a polyclonal antibody against human serum BChE cross reacted with monkey serum BChE. The identical nature of the catalytic activities of human serum BChE and monkey serum BChE supports the postulate that all three catalytic activities co-exist in the same enzyme. This is the first time that purification and characterisation of the monkey serum BChE which has the highest sequence identity and immunological identity with that of human serum BChE, is being reported.


Assuntos
Amidoidrolases/metabolismo , Aminas/farmacologia , Animais , Butirilcolinesterase/sangue , Carboxipeptidases/metabolismo , Quimotripsina/metabolismo , Encefalina Leucina/metabolismo , Inibidores Enzimáticos/farmacologia , Haplorrinos , Metaloproteínas/metabolismo , Fragmentos de Peptídeos/metabolismo , Zinco/metabolismo
11.
Indian J Biochem Biophys ; 1973 Sep; 10(3): 223-4
Artigo em Inglês | IMSEAR | ID: sea-26457
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA