Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. J. Pharm. Sci. (Online) ; 59: e22009, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1447565

RESUMO

Abstract Oxazolidine derivatives (OxD) have been described as third-line antibiotics and antitumoral agents. The inclusion complexes based on cyclodextrin could improve the solubility and bioavailability of these compounds. A novel synthetic OxD was used, and its inclusion complexes were based on 2-hydroxy-beta-cyclodextrin (2-HPßCD). We conducted an in silico study to evaluate the interaction capacity between OxD and 2-HPßCD. Characterization studies were performed through scanning electron microscopy (SEM), Fourier-transformed infrared (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), X-ray diffraction (XRD), and thermal analyses. A kinetic study of the OxD was performed, including a cytotoxicity assay using peripheral blood mononuclear cells (PBMCs). The maximum increment of solubility was obtained at 70 mM OxD using 400 mM 2-HPßCD. SEM analyses and FTIR spectra indicated the formation of inclusion complexes. 1H-NMR presented chemical shifts that indicated 1:1 stoichiometry. Different thermal behaviors were obtained. The pharmacokinetic profile showed a short release time. Pure OxD and its inclusion complex did not exhibit cytotoxicity in PBMCs. In silico studies provided a foremost insight into the interactions between OxD and 2-HPßCD, including a higher solubility in water and an average releasing profile without toxicity in normal cells


Assuntos
Solubilidade/efeitos dos fármacos , Ciclodextrinas/agonistas , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Antibacterianos/análise
2.
Braz. J. Pharm. Sci. (Online) ; 58: e20013, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394062

RESUMO

The aim of the present study is to improve the solubility and antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin by formulating its inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin in solution and in solid state. The phase solubility study was used to investigate the interactions between 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and 2-hydroxypropyl-ß-cyclodextrin and to estimate the molar ratio between them. The structural characterization of binary systems (prepared by physical mixing, kneading and solvent evaporation methods) was analysed using the FTIR-ATM spectroscopy. The antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and inclusion complexes prepared by solvent evaporation method was tested by the diffusion and dilution methods on various strains of microorganisms. The results of phase solubility studies showed that 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin formed the inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin of AP type. The solubility of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin was increased 64.05-fold with 50% w/w of 2-hydroxypropyl-ß-cyclodextrin at 37 oC. The inclusion complexes in solid state, prepared by the solvent evaporation method, showed higher solubility in purified water and in phosphate buffer solutions in comparison with 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin alone. The inclusion complexes prepared by solvent evaporation method showed higher activity on Bacillus subtilis and Staphylococcus aureus compared to uncomplexed 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin due to improved aqueous solubility, thus increasing the amount of available 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin that crosses the bacterial membrane.


Assuntos
Solubilidade , Ciclodextrinas/agonistas , Anti-Infecciosos , Análise Espectral/instrumentação , Staphylococcus aureus/classificação , Bacillus subtilis/classificação , Espectroscopia de Infravermelho com Transformada de Fourier , Diluição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA