Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 55: 32-32, 2022. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1403570

RESUMO

BACKGROUND: Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. RESULTS: The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. CONCLUSION: The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.


Assuntos
Humanos , Animais , Produtos Biológicos , Proteínas de Repetição de Anquirina Projetadas , Preparações Farmacêuticas/metabolismo , Cloroplastos/metabolismo , Cloroplastos/química , Receptor ErbB-2 , Linhagem Celular Tumoral , Mamíferos/metabolismo
2.
Rev. bras. plantas med ; 13(4): 467-474, 2011. ilus, graf, tab
Artigo em Português | LILACS | ID: lil-611451

RESUMO

Objetivou-se, com a realização da pesquisa, avaliar modificações fisiológicas e anatômicas em plantas de melissa, cultivadas sob malhas termorrefletoras (Aluminet®), em diferentes níveis de sombreamento, visando conhecer a plasticidade fenotípica em resposta de adaptação a diferentes quantidades de luz. Os tratamentos foram caracterizados por plantas submetidas a pleno sol e a 20 e 60 por cento de intensidade luminosa, e arranjados conforme o delineamento inteiramente casualizado (DIC). As quantificações de clorofila foram feitas em quatro repetições, as medições das epidermes e parênquimas foram repetidas 15 vezes e utilizou-se 10 repetições para as avaliações das características de cloroplastos e grãos de amido destes. Plantas submetidas a 20 por cento de intensidade luminosa apresentaram maior quantidade de clorofila a e, portanto, maior razão clorofila a/b. Comparativamente, as folhas de melissa a pleno sol e a 60 por cento de luz apresentaram células da epiderme adaxial mais espessas, mas as células da epiderme abaxial mostraram características encontradas em folhas de sombra, ou seja, mais finas. Quanto maior a intensidade luminosa, maior o número de cloroplastos, porém, a pleno sol mostraram-se mais finos e com menor área. Os grãos de amido de plantas cultivadas sob ambientes sombreados tiveram maior área e ocuparam maior parte nos cloroplastos de plantas a 60 por cento de intensidade luminosa. Assim, plantas de melissa, quando submetidas ao sombreamento, tiveram plasticidade fenotípica.


The aim of this study was to evaluate physiological and anatomical modifications in lemon balm plants, cultivated under thermo-reflector nets (Aluminet®) at different levels of shading, in order to understand the phenotypic plasticity in adaptation response to different light quantities. The treatments were characterized by plants subjected to full sun and 20 and 60 percent of luminous intensity, and arranged in completely randomized design (CRD). The quantifications of chlorophylls were done in four replicates, the measurements of epidermis and parenchymas were repeated 15 times and 10 replicates were used to evaluate characteristics of chloroplasts and their starch grains. Plants subjected to 20 percent of luminous intensity showed higher quantity of chlorophyll a and, therefore, higher chlorophyll a/b ratio. Lemon balm leaves under full sun and 60 percent of light showed thicker adaxial epidermis cells, but the abaxial epidermis cells showed characteristics found in shaded leaves, i.e., they were slender. The higher the light intensity, the larger the number of chloroplasts; however, under full sun, they were slender and had smaller area. The starch grains of leaves grown under shaded environments showed larger area and, at 60 percent of luminous intensity, occupied the largest part of chloroplasts. Thus, lemon balm plants, subjected to shading conditions, showed phenotypic plasticity.


Assuntos
Adaptação Biológica/fisiologia , Adaptação Biológica/genética , Adaptação à Escuridão/fisiologia , Adaptação à Escuridão/genética , Melissa/análise , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/genética , Brasil , Cloroplastos/fisiologia , Cloroplastos/genética , Cloroplastos/química , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/genética
3.
Braz. j. med. biol. res ; 39(11): 1435-1444, Nov. 2006. ilus, graf
Artigo em Inglês | LILACS | ID: lil-437826

RESUMO

Evidence based on immunological cross-reactivity and anti-diabetic properties has suggested the presence of insulin-like peptides in plants. The objective of the present study was to investigate the presence of insulin-like proteins in the leaves of Bauhinia variegata ("pata-de-vaca", "mororó"), a plant widely utilized in popular medicine as an anti-diabetic agent. We show that an insulin-like protein was present in the leaves of this plant. A chloroplast protein with a molecular mass similar to that of bovine insulin was extracted from 2-mm thick 15 percent SDS-PAGE gels and fractionated with a 2 x 24 cm Sephadex G-50 column. The activity of this insulin-like protein (0.48 mg/mL) on serum glucose levels of four-week-old Swiss albino (CF1) diabetic mice was similar to that of commercial swine insulin used as control. Further characterization of this molecule by reverse-phase hydrophobic HPLC chromatographic analysis as well as its antidiabetic activity on alloxan-induced mice showed that it has insulin-like properties. Immunolocalization of the insulin-like protein in the leaves of B. variegata was performed by transmission electron microscopy using a polyclonal anti-insulin human antibody. Localization in the leaf blades revealed that the insulin-like protein is present mainly in chloroplasts where it is also found associated with crystals which may be calcium oxalate. The presence of an insulin-like protein in chloroplasts may indicate its involvement in carbohydrate metabolism. This finding has strengthened our previous results and suggests that insulin-signaling pathways have been conserved through evolution.


Assuntos
Animais , Bovinos , Camundongos , Bauhinia/química , Cloroplastos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/isolamento & purificação , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/isolamento & purificação , Folhas de Planta/química , Autoanticorpos/sangue , Bauhinia/citologia , Cromatografia Líquida de Alta Pressão , Cloroplastos/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Hipoglicemiantes/uso terapêutico , Imunoglobulina G/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/uso terapêutico , Microscopia Eletrônica de Transmissão , Folhas de Planta/citologia
4.
Indian J Biochem Biophys ; 2000 Feb; 37(1): 59-66
Artigo em Inglês | IMSEAR | ID: sea-27307

RESUMO

Purification of mitochondria and mitochondrial protein complexes from green tissues is often severely impaired by the presence of chloroplasts and their proteins. Here we present a method which allows analysis of respiratory protein complexes from potato leaves. The procedure includes the preparation of an organellar fraction specifically enriched in mitochondria and the separation of organellar protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). For the first time mitochondrial and chloroplast protein complexes have been resolved simultaneously in a native gel. BN-PAGE allowed the separation of eleven bands, including the mitochondrial NADH-dehydrogenase, the bc1 complex and the mitochondrial F1-ATP synthase as well as the chloroplast F1-ATP synthase, the cytochrome b6f complex, the two photosystems and the light harvesting complex. The resolution of the protein complexes in the first dimension was good enough to allow identification of all subunits of individual complexes in the second dimension under denaturing conditions. Thus, BN-PAGE offers an opportunity to analyze mitochondrial and chloroplast protein complexes from a single preparation from very small amounts of tissue. The implications of our findings, for studies on protein expression and turnover in different tissues and developmental stages, are discussed.


Assuntos
Cloroplastos/química , Eletroforese em Gel Bidimensional , Proteínas de Membrana/química , Mitocôndrias/química , Folhas de Planta/química , Proteínas de Plantas/química , Solanum tuberosum/química
5.
Indian J Biochem Biophys ; 1992 Aug; 29(4): 350-4
Artigo em Inglês | IMSEAR | ID: sea-27755

RESUMO

Cadmium (200 ppm) applied through the rooting medium to 30-day-old wheat plants decreased chlorophyll content, net CO2 exchanges and PSII activity by 34, 54 and 43% respectively. Thylakoid total lipids, total glycolipids, total phospholipids and total neutral lipids decreased by 22, 23, 12 and 25%, respectively, under cadmium treatment. Thylakoid membrane glycolipids had three major constituents, viz. monogalactosyl diacylglycerol, digalactosyl diacylglycerol and sulphoquinovosyl diacylglycerol. Monogalactosyl diacylglycerol and digalactosyl diacylglycerol contents decreased by 32 and 27%, respectively, under cadmium. Cadmium application also decreased the concentration of phosphatidyl glycerol and phosphatidyl choline to the extent of about 57 and 31%, respectively. On the other hand, phosphatidic acid and free fatty acids content showed an increase. These compositional changes in thylakoid membranes might be responsible for reduced PSII activity and rate of photosynthesis as observed under cadmium treatment.


Assuntos
Cádmio/toxicidade , Clorofila/análise , Cloroplastos/química , Lipídeos/análise , Membranas/química , Fotossíntese/efeitos dos fármacos , Sementes/efeitos dos fármacos , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA