Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Veterinary Science ; : 483-491, 2018.
Artigo em Inglês | WPRIM | ID: wpr-758837

RESUMO

The hypothalamic paraventricular nucleus (PVN) contains two types of neurons projecting to either the rostral ventrolateral medulla (PVN(RVLM)) or the intermediolateral horn (IML) of the spinal cord (PVN(IML)). These two neuron groups are intermingled in the same subdivisions of the PVN and differentially regulate sympathetic outflow. However, electrophysiological evidence supporting such functional differences is largely lacking. Herein, we compared the electrophysiological properties of these neurons by using patch-clamp and retrograde-tracing techniques. Most neurons (>70%) in both groups spontaneously fired in the cell-attached mode. When compared to the PVN(IML) neurons, the PVN(RVLM) neurons had a lower firing rate and a more irregular firing pattern (p < 0.05). The PVN(RVLM) neurons showed smaller resting membrane potential, slower rise and decay times, and greater duration of spontaneous action potentials (p < 0.05). The PVN(RVLM) neurons received greater inhibitory synaptic inputs (frequency, p < 0.05) with a shorter rise time (p < 0.05). Taken together, the results indicate that the two pre-sympathetic neurons differ in their intrinsic and extrinsic electrophysiological properties, which may explain the lower firing activity of the PVN(RVLM) neurons. The greater inhibitory synaptic inputs to the PVN(RVLM) neurons also imply that these neurons have more integrative roles in regulation of sympathetic activity.


Assuntos
Animais , Potenciais de Ação , Incêndios , Cornos , Potenciais Pós-Sinápticos Inibidores , Potenciais da Membrana , Neurônios , Núcleo Hipotalâmico Paraventricular , Técnicas de Patch-Clamp , Medula Espinal , Corno Lateral da Medula Espinal
2.
Journal of the Korean Balance Society ; : 101-107, 2017.
Artigo em Coreano | WPRIM | ID: wpr-761258

RESUMO

The autonomic nervous system (ANS) integrates the function of the internal organs for the homeostasis against various external environmental changes. The efferent components of the ANS are regulated by sensory signals arising from the viscera as well as non-visceral organs. The central neural networks that integrate these sensory signals and modify visceral motor output are complex, and synaptic reflexes formed in the brainstem and spinal cord integrate behavioral responses and visceral responses through the central neural networks. A detailed understanding of the neural network presented above may explain the role of the vestibular system on the homeostasis more extensively.


Assuntos
Sistema Nervoso Autônomo , Tronco Encefálico , Homeostase , Fisiologia , Reflexo , Núcleo Solitário , Medula Espinal , Corno Lateral da Medula Espinal , Vísceras
3.
The Korean Journal of Physiology and Pharmacology ; : 675-686, 2017.
Artigo em Inglês | WPRIM | ID: wpr-727946

RESUMO

Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.


Assuntos
Animais , Ratos , 6-Ciano-7-nitroquinoxalina-2,3-diona , Medula Suprarrenal , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Pressão Sanguínea , Denervação , Maleato de Dizocilpina , Tontura , Epinefrina , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico , Cefaleia , Hipotensão , Hipotensão Ortostática , Incidência , N-Metilaspartato , Nitroprussiato , Receptores de Glutamato , Reflexo , Corno Lateral da Medula Espinal , Síncope , Núcleos Vestibulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA