Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 187-92, 2009.
Artigo em Inglês | WPRIM | ID: wpr-635133

RESUMO

To observe the alteration in the expression of DNA repair enzymes hOGG1 and hMYHalpha and the change in 8-OHdG levels in the HBx gene-transfected cells HepG2/HBx and to explore the mechanisms of the HBV-associated hepatocellular carcinoma, the gene-transfected cells HepG2/HBx which stably expressed HBx was established, and the effect of HBx on the cell cycle and proliferation of HepG2 was examined. By using the beta-actin as the interior control, real-time polymerase chain reaction (Real-time qPCR) was employed to quantitatively detect the expression of DNA repair enzymes hOGG1 and hMYHalpha in the HepG2/HBx, the control cells HepG2 and HepG2 transfected with pcDNA3.1 vector (HepG2/pDNA3.1). The 8-OHdG levels were determined by HPLC/ECD in the established gene-transfected cells HepG2/HBx and the control cells HepG2 and HepG2/pcDNA3.1. Our results showed that the expression of DNA repair enzyme hMYHalpha in the HepG2/HBx (0.021+/-0.007) was significantly lower than that of HepG2 (0.099+/-0.041) (P0.05). The 8-OHdG level in the HepG2/HBx was significantly higher than that in HepG2 and HepG2/pcDNA3.1 (P<0.05). It is concluded that HBx gene may inhibit the expression of DNA repair enzyme hMYHalpha mRNA to impair the ability to repair the intracellular DNA oxidative damage, to increase the oxidative DNA-adduct 8-OHdG and to affect the nucleotide excision repair function, thus participate in the occurrence and development of hepatocellular carcinoma.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Células Hep G2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética
2.
Experimental & Molecular Medicine ; : 71-77, 2004.
Artigo em Inglês | WPRIM | ID: wpr-190971

RESUMO

Large doses of acetaminophen (APAP) could cause oxidative stress and tissue damage through production of reactive oxygen/nitrogen (ROS/RNS) species and quinone metabolites of APAP. Although ROS/RNS are known to modify DNA, the effect of APAP on DNA modifications has not been studied systematically. In this study, we investigate whether large doses of APAP can modify the nuclear DNA in C6 glioma cells used as a model system, because these cells contain cytochrome P450-related enzymes responsible for APAP metabolism and subsequent toxicity (Geng and Strobel, 1995). Our results revealed that APAP produced ROS and significantly elevated the 8-oxo- deoxyguanosine (8-oxodG) levels in the nucleus of C6 glioma cells in a time and concentration dependent manner. APAP significantly reduced the 8- oxodG incision activity in the nucleus by decreasing the activity and content of a DNA repair enzyme, Ogg1. These results indicate that APAP in large doses can increase the 8-oxodG level partly through significant reduction of Ogg1 DNA repair enzyme.


Assuntos
Animais , Humanos , Ratos , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Desoxiguanosina/química , Glioma/metabolismo , Glutationa/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Experimental & Molecular Medicine ; : 98-105, 2003.
Artigo em Inglês | WPRIM | ID: wpr-18469

RESUMO

Human 8-oxo-G-DNA glycosylase 1 (hOGG1) is a DNA glycosylase to cleave 8-oxo-7,8-dihydroguanine (8-oxo-G), a mutagenic DNA adduct formed by oxidant stresses. Here, we examined hOGG1 protein expression and repair activity to nick a DNA strand at the site of 8-oxo-G during differentiation of hematopoietic cells using HL-60 cells. Overall expression of hOGG1 protein was increased during granulocytic differentiation of HL-60 cells induced by DMSO and monocytic differentiation by vitamine D3. Greater level of hOGG1 protein was expressed in DMSO-treated cells. However, change in the DNA nicking activity was not in parallel with the change in hOGG1 protein expression, especially in PMA-treated cells. In PMA- treated cells, the level of hOGG1 protein was lowered, even though the DNA nicking activity was elevated, in a manner similar to the changes in serum- deprived HL-60 cells. These results indicate that hOGG1 expression change during differentiation of hematopoietic stem cells for adaptation to new environments. And the DNA cleaving activity may require additional factor(s) other than expressed hOGG1 protein, especially in apoptotic cell death.


Assuntos
Humanos , Western Blotting , Diferenciação Celular , Meios de Cultura Livres de Soro/farmacologia , DNA Glicosilases/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Granulócitos/citologia , Células HL-60 , Monócitos/citologia
4.
Experimental & Molecular Medicine ; : 106-112, 2003.
Artigo em Inglês | WPRIM | ID: wpr-18468

RESUMO

8-oxo-7,8-dihydroguanine (8-oxo-G) in DNA is a mutagenic adduct formed by reactive oxygen species. In Escherichia coli, 2,6-dihydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase (Fpg) removes this mutagenic adduct from DNA. In this report, we demonstrate base excision repair (BER) synthesis of DNA containing 8-oxo-G with Fpg in vitro. Fpg cut the oligonucleotide at the site of 8-oxo-G, producing one nucleotide gap with 3' and 5' phosphate termini. Next, 3' phosphatase(s) in the supernatant obtained by precipitating a crude extract of E. coli with 40% ammonium sulfate, removed the 3' phosphate group at the gap, thus exposing the 3' hydroxyl group to prime DNA synthesis. DNA polymerase and DNA ligase then completed the repair. These results indicate the biological significance of the glycosylase and apurinic/ apyrimidinic (AP) lyase activities of Fpg, in concert with 3' phosphatase(s) to create an appropriately gapped substrate for efficient BER synthesis of DNA containing 8-oxo-G.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , DNA Bacteriano/química , DNA-Formamidopirimidina Glicosilase/metabolismo , Escherichia coli/enzimologia , Guanina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA