Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 35: 33-38, sept. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-1047766

RESUMO

Background: Anaerobic digestion is an alternative bioprocess used to treat effluents containing toxic compounds such as phenol and p-cresol. Selection of an adequate sludge as inoculum containing an adapted microbial consortium is a relevant factor to improve the removal of these pollutants. The objective of this study is to identify the key microorganisms involved in the anaerobic digestion of phenol and p-cresol and elucidate the relevance of the bamA gene abundance (a marker gene for aromatic degraders) in the process, in order to establish new strategies for inocula selection and improve the system's performance. Results: Successive batch anaerobic digestion of phenol and p-cresol was performed using granular or suspended sludge. Granular sludge in comparison to suspended sludge showed higher degradation rates both for phenol (11.3 ± 0.7 vs 8.1 ± 1.1 mg l-1 d-1) and p-cresol (7.8 ± 0.4 vs 3.7 ± 1.0 mg l-1 d-1). After three and four re-feedings of phenol and p-cresol, respectively, the microbial structure from both sludges was clearly different from the original sludges. Anaerobic digestion of phenol and p-cresol generated an abundance increase in Syntrophorhabdus genus and bamA gene, together with hydrogenotrophic and aceticlastic archaea. Analysis of results indicates that differences in methanogenic pathways and levels of Syntrophorhabdus and bamA gene in the inocula, could be the causes of dissimilar degradation rates between each sludge. Conclusions: Syntrophorhabdus and bamA gene play relevant roles in anaerobic degradation of phenolics. Estimation of these components could serve as a fast screening tool to find the most acclimatized sludge to efficiently degrade mono-aromatic compounds.


Assuntos
Bactérias/metabolismo , Digestão Anaeróbia , Fenol/metabolismo , Cresóis/metabolismo , Fenóis/metabolismo , Esgotos , Biodegradação Ambiental , Deltaproteobacteria , Consórcios Microbianos , Reação em Cadeia da Polimerase em Tempo Real
2.
Journal of Cancer Prevention ; : 70-76, 2018.
Artigo em Inglês | WPRIM | ID: wpr-740102

RESUMO

BACKGROUND: Gut microbiota contributes to intestinal and immune homeostasis through host-microbiota interactions. Distribution of the gut microbiota differs according to the location in the gastrointestinal tract. Although the microbiota properties change with age, evidence for the regional difference of gut microbiota has been restricted to the young. The aim of this study is to compare the gut microbiota between terminal ileum and cecum of old rats. METHODS: We analyzed gut microbiome of luminal contents from ileum and cecum of 74-week-old and 2-year-old rats (corresponding to 60-year and 80-year-old of human age) by metagenome sequencing of 16S rRNA. RESULTS: Inter-individual variation (beta diversity) of microbiota was higher in ileum than in cecum. Conversely, alpha diversity of microbiota composition was higher in cecum than in ileum. Lactobacillaceae were more abundant in ileum compared to cecum while Ruminococcaceae and Lachnospiraceae were more enriched in cecum. The proportions of Deltaproteobacteria were increased in cecal microbiota of 2-year-old rats compared to 74-week-old rats. CONCLUSIONS: Major regional distinctions of microbiota between ileum and cecum of old rats appear consistent with those of young rats. Age-related alterations of gut microbiota in old rats seem to occur in minor compositions.


Assuntos
Idoso de 80 Anos ou mais , Animais , Pré-Escolar , Humanos , Ratos , Envelhecimento , Ceco , Deltaproteobacteria , Microbioma Gastrointestinal , Trato Gastrointestinal , Homeostase , Íleo , Lactobacillaceae , Metagenoma , Microbiota , Fenobarbital
3.
Biomedical and Environmental Sciences ; (12): 113-118, 2007.
Artigo em Inglês | WPRIM | ID: wpr-249880

RESUMO

<p><b>OBJECTIVE</b>To develop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment.</p><p><b>METHODS</b>The norB gene coding the ndtrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria.</p><p><b>RESULTS</b>After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L x d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.</p><p><b>CONCLUSION</b>DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.</p>


Assuntos
Clonagem Molecular , Embaralhamento de DNA , Deltaproteobacteria , Genética , Evolução Molecular Direcionada , Escherichia coli , Genética , Gammaproteobacteria , Genética , Nitrito Redutases , Química , Genética , Nitrogênio , Metabolismo , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA