Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Actual. osteol ; 18(1): 53-54, 2022.
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1396086
2.
Actual. osteol ; 17(2): 78-91, 2021. graf, ilus
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1370190

RESUMO

La concepción original del mecanostato como un regulador de la rigidez estructural ósea orientado a mantener un determinado 'factor de seguridad' en todos los esqueletos parece no corresponder por igual a cualquier hueso y para cualquier tipo de estímulo. Hemos descubierto que la estructura cortical diafisaria del peroné humano manifiesta un comportamiento ambiguo del sistema, referido al uso del pie. La diáfisis peronea, además de ser insensible al desuso, se rigidiza, como sería de esperar, por entrenamientos en disciplinas deportivas que rotan o revierten el pie (hockey, fútbol, rugby); pero, llamativamente, se flexibiliza en su mitad proximal por entrenamiento en carrera larga, que optimiza el rendimiento del salto que acompaña a cada paso. La referida rigidización robustecería la región peronea de inserción de los músculos que rotan o revierten el pie, favoreciendo la locomoción sobre terrenos irregulares o 'gambeteando', propia de especies predadoras como los leopardos. La 'inesperada' flexibilización proximal, pese a reducir la resistencia a la fractura por flexión lateral (poco frecuente en el hombre), favorecería la absorción elástica de la energía contráctil de la musculatura inserta, optimizando el rendimiento del salto al correr, condición vital para especies presas como las gacelas. La falta de analogía de estas respuestas de la estructura peronea a distintos entrenamientos, incompatible con el mantenimiento de un factor de seguridad, sugiere su vinculación preferencial con la optimización de aptitudes esqueléticas con valor selectivo. Esto ampliaría el espectro regulatorio del mecanostato a propiedades esqueléticas 'vitales', más allá del control de la integridad ósea. Su manifestación en el hombre, ajena a connotaciones selectivas (quizá resultante del mantenimiento de genes ancestrales), permitiría proponer la indicación de ejercicios orientados en direcciones preferenciales a este respecto, especialmente cuando estas coincidieran con las de las fuerzas que podrían fracturar al hueso. (AU)


The original notion of the mechanostat as a regulator of bone structural rigidity oriented to maintain a certain 'safety factor' in all skeletons does not seem to correspond equally to every bone and for any type of stimulus. We have discovered that the diaphyseal cortical structure of the human fibula shows an ambiguous behavior of the system, with reference to the use of the foot. The peroneal shaft, in addition to being insensitive to disuse, becomes stiffened, as might be expected, by training in sport disciplines that involve rotating or reversing the foot (hockey, soccer, rugby); but, remarkably, it becomes more flexible in its proximal half by long-distance running training, which optimizes the performance of the jump that accompanies each step. The stiffening would strengthen the peroneal region of insertion of the muscles that rotate or reverse the foot, favoring locomotion on uneven terrain or 'dribbling', typical of predatory species such as leopards. The 'unexpected' proximal flexibilization, despite reducing the resistance to lateral flexion fracture (rare in human), would favor the elastic absorption of contractile energy from the inserted muscles, optimizing jumping performance when running, a vital condition for prey species such as gazelles. The lack of analogy of these responses of the peroneal structure to different training, incompatible with the maintenance of a safety factor, suggests its preferential link with the optimization of skeletal aptitudes with selective value. This would expand the regulatory spectrum of the mechanostat to 'vital' skeletal properties, beyond the control of bone integrity. Its manifestation in humans, oblivious to selective connotations (perhaps resulting from the maintenance of ancestral genes), would make it possible to propose the indication of exercises oriented in preferential directions, especially when they coincide with the direction of the forces that could fracture the bone. (AU)


Assuntos
Humanos , Animais , Esportes/fisiologia , Osso e Ossos/fisiologia , Exercício Físico/fisiologia , Fíbula/fisiologia , Pé/fisiologia , Futebol/fisiologia , Atletismo/fisiologia , Fenômenos Biomecânicos , Fraturas Ósseas/prevenção & controle , Fíbula/anatomia & histologia , Futebol Americano/fisiologia , Hóquei/fisiologia
3.
Clinics ; 65(4): 433-440, 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-546318

RESUMO

PURPOSE: The purpose of this study was to evaluate the relative importance of the different static stabilizers of the posterolateral corner of the knee in cadavers. METHODS: Tests were performed with the application of a varus and external rotation force to the knee in extension at 30 and 60 degrees of flexion using 10 cadaver knees. The forces were applied initially to an intact knee and then repeated after a selective sectioning of the ligaments into the following: section of the lateral collateral ligament; section of the lateral collateral ligament and the popliteofibular complex; and section of the lateral collateral ligament, the popliteofibular complex and the posterolateral capsule. The parameters studied were the angular deformity and stiffness when the knees were submitted to a 15 Newton-meter varus torque and a 6 Newton-meter external tibial torque. Statistical analysis was performed using the ANOVA (Analysis of Variance) and Tukey's tests. RESULTS AND CONCLUSION: Our findings showed that the lateral collateral ligament was important in varus stability at 0, 30 and 60 degrees. The popliteofibular complex was the most important structure for external rotation stability at all angles of flexion and was also important for varus stability at 30 and 60 degrees. The posterolateral capsule was important for varus stability at 0 and 30 degrees and for external rotation stability in extension. Level of evidence: Level IV (cadaver study).


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Instabilidade Articular/reabilitação , Articulação do Joelho/fisiologia , Ligamento Colateral Médio do Joelho/fisiologia , Análise de Variância , Fenômenos Biomecânicos , Fíbula/fisiologia , Articulação do Joelho/anatomia & histologia , Ligamento Colateral Médio do Joelho/anatomia & histologia , Procedimentos Ortopédicos/métodos , Torque , Tendões/fisiologia , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA