Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Protein & Cell ; (12): 946-949, 2011.
Artigo em Inglês | WPRIM | ID: wpr-757315

RESUMO

Tissue and organ differentiation is tightly controlled to ensure proper development and function of the growing embryo as well as cells such as lymphocytes that differentiate throughout the adult stage. Therefore it is vital that the genes and the protein they encode that are involved in these processes function accurately. Hence, any mutation or error that occurs along the way can result in extensive damage, which is expressed in various ways in the embryo and can result in immune pathogenesis, including immunodeficiency and autoimmune diseases, when lymphocyte development is altered. A number of studies have been carried out to look at the genes regulating transcription in tissue differentiation, including the transcription factors Pbx1. This gene is of particular interest to us as we have identified that it is associated with systemic lupus erythematosus susceptibility (Cuda et al., in press). This perspective summarizes the known roles of Pbx1 in tissue differentiation as well as our recent findings associating genetic variations in Pbx1 to lupus susceptibility, and we will speculate on how this gene controls the maintenance of immune tolerance in T cells.


Assuntos
Animais , Humanos , Camundongos , Diferenciação Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Genética , Alergia e Imunologia , Loci Gênicos , Alergia e Imunologia , Predisposição Genética para Doença , Proteínas de Homeodomínio , Genética , Alergia e Imunologia , Tolerância Imunológica , Lúpus Eritematoso Sistêmico , Genética , Alergia e Imunologia , Ativação Linfocitária , Camundongos Transgênicos , Fator de Transcrição 1 de Leucemia de Células Pré-B , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas , Genética , Alergia e Imunologia , Transdução de Sinais , Linfócitos T Reguladores , Biologia Celular , Alergia e Imunologia , Fatores de Transcrição , Genética , Alergia e Imunologia , Tretinoína , Metabolismo
2.
Chinese Journal of Medical Genetics ; (6): 495-498, 2007.
Artigo em Chinês | WPRIM | ID: wpr-247284

RESUMO

<p><b>OBJECTIVE</b>To apply linkage disequilibrium (LD) maps to associations studies with high throughput single nucleotide polymorphisms (SNPs).</p><p><b>METHODS</b>Seven hundred and fifty-four SNPs were genotyped in 160 Shanghai Chinese. LD maps were constructed in cases and controls separately. By comparing the decline of LD unit with distance between the two groups, disease susceptible loci were estimated. This method was compared with traditional analyses including LD analysis, single SNP and haplotype analyses.</p><p><b>RESULTS</b>The analysis of LD maps could detect the chromosome regions with different LD patterns between the cases and controls. The alleles and/or haplotypes frequencies of SNPs within the regions had significantly different distributions or trends of significantly different distributions.</p><p><b>CONCLUSION</b>This method may be applied to analyze the data from association studies with high throughput SNPs genotype information.</p>


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Proteínas de Ligação a DNA , Genética , Diabetes Mellitus Tipo 2 , Genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Métodos , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fator de Transcrição 1 de Leucemia de Células Pré-B , Proteínas Proto-Oncogênicas , Genética , Receptor X Retinoide gama , Genética
3.
Chinese Journal of Pediatrics ; (12): 684-686, 2007.
Artigo em Chinês | WPRIM | ID: wpr-311750

RESUMO

<p><b>OBJECTIVE</b>In childhood acute lymphoblastic leukemia (ALL), cytogenetics plays an important role in diagnosis, allocation of treatment and prognosis. On the basis of the conventional cytogenetic analysis, molecular methods have improved pediatric hematologists/oncologist's ability to accurately and rapidly perform risk-stratification on patients with childhood ALL during the last few years. The aim of the present study was to assess the demography of cytogenetic abnormalities in childhood ALL.</p><p><b>METHOD</b>The study subjects consisted of 124 newly diagnosed ALL patients younger than 16 years of age, who were diagnosed at the Department of Pediatric Hematology/Oncology, Soochow University Children's Hospital. The diagnosis and FAB subtypes of ALL was determined by Wright-Giemsa-stained bone marrow smears and cytochemical staining. Immunophenotyping of the bone marrow samples was performed by flow cytometry. Multiplex polymerase chain reaction (Multiplex PCR) analysis was performed to detect the 29 most common leukemia translocations for routine molecular diagnostic hematopathology practice, and complement the information gained from conventional cytogenetic analysis.</p><p><b>RESULTS</b>Cytogenetic analysis was successful in 112 of 124 children with ALL. Sixty-eight (60%) of them had clonal chromosomal abnormalities. Numerical imbalances consisted of hyperdiploid (> 47 chromosomes, 36 cases), hypodiploid (< 46 chromosomes, 14 cases), pseudodiploidy (18 cases). Chromosomal translocations were observed in 13 patients by conventional cytogenetic analysis. Three cases were found positive for 4; 11 translocation, 3 cases for 9; 22 translocation, 1 case for 1; 19 translocation and 6 cases for other rare translocations. Multiplex-PCR analysis detected 116 of the 124 ALL patients. Thirteen cases of TEL-AML1, 10 cases of rearrangement in the MLL gene, 4 cases of E2A-PBX1, 4 cases of E2A-HLF, 3 cases of BCR-ABL, 2 cases of TLS-ERG, 32 cases of HOX11 were detected by Multiplex PCR in B-lineage leukemias. SIL-TAL1 had been found in 4 of 7 of T-lineage leukemias.</p><p><b>CONCLUSIONS</b>Sixty-eight cases of ALL showed chromosomal aberrations. Multiplex PCR positivity was detected in 59 (50%) of the 116 ALL patients studied. Multiplex PCR combined with chromosomal analysis uncovered chromosomal abnormalities in 95 of 124 (77%) of ALL patients and supplemented each other in detecting chromosomal abnormalities.</p>


Assuntos
Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Genética , Aberrações Cromossômicas , Subunidade alfa 2 de Fator de Ligação ao Core , Genética , Análise Citogenética , Proteínas de Ligação a DNA , Genética , Proteínas de Fusão bcr-abl , Genética , Fusão Gênica , Genética , Proteínas de Homeodomínio , Imunofenotipagem , Métodos , Cariotipagem , Proteína de Leucina Linfoide-Mieloide , Genética , Proteínas de Fusão Oncogênica , Genética , Reação em Cadeia da Polimerase , Fator de Transcrição 1 de Leucemia de Células Pré-B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Genética , Proteínas Proto-Oncogênicas , Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Métodos , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA