Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 50: 19, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-950871

RESUMO

BACKGROUND: Bromodomain-containing protein 4 (BRD4) inhibition is a new therapeutic strategy for many malignancies. In this study, we aimed to explore the effect of BRD4 inhibition by JQ1 on in vitro cell growth, migration and invasion of salivary adenoid cystic carcinoma (SACC). METHODS: The human normal epithelial cells and SACC cells (ACC-LM and ACC-83) were treated with JQ1 at concentrations of 0, 0.1, 0.5 or 1 µM. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation. Cell apoptosis and cell cycle distribution was evaluated by Flow cytometry. Immunofluorescence staining was used to examine the expression of BRD4 in SACC cells. The quantitative real-time polymerase chain reaction (qRT-PCR) assay and western blot assay were performed to examine messenger RNA (mRNA) and protein levels in SACC cells. Wound- healing assay and transwell assay were used to evaluate the activities of migration and invasion of SACC cells. RESULTS: JQ1 exhibits no adverse effects on proliferation, cell cycle and cell apoptosis of the normal human epithelial cells, while suppressed proliferation and cell cycle, and induced apoptosis of SACC cells, down-regulated the mRNA and protein levels of BRD4 in SACC cells, meanwhile reduced protein expressions of c-myc and BCL-2, two known target genes of BRD4. Moreover, JQ1 inhibited SACC cell migration and invasion by regulating key epithelial-mesenchymal transition (EMT) characteristics including E-cadherin, Vimentin and Twist. CONCLUSIONS: BRD4 is an important transcription factor in SACC and BRD4 inhibition by JQ1 may be a new strategy for SACC treatment.


Assuntos
Humanos , Azepinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Neoplasias das Glândulas Salivares/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Carcinoma Adenoide Cístico/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Invasividade Neoplásica/patologia , Neoplasias das Glândulas Salivares/patologia , Regulação para Baixo , Carcinoma Adenoide Cístico/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Reação em Cadeia da Polimerase em Tempo Real
2.
Journal of Korean Medical Science ; : 987-992, 2012.
Artigo em Inglês | WPRIM | ID: wpr-154194

RESUMO

Inflammation is closely related to the progression of cancer as well as tumorigenesis. Here, we investigated the effect of prostaglandin E2 (PGE2) and interleukin-1beta (IL-1beta) on E-cadherin expression in SNU719 gastric cancer cells. E-cadherin expression decreased as the dose or exposure time of PGE2 and IL-1beta increased, whereas Snail expression increased with dose or time of PGE2 and IL-1beta. E-cadherin expression reduced by PGE2 treatment increased after the transfection of Snail siRNA. Neutralization of IL-1beta using anti-IL-1beta antibody blocked the expression pattern of E-cadherin and Snail occurred by IL-1beta treatment. However, there was no synergic effect of IL-1beta and PGE2 on the expression pattern of E-cadherin and Snail. In conclusion, inflammatory mediators reduced E-cadherin expression by enhancing Snail expression in gastric cancer cells. Inflammation-induced transcriptional regulation of E-cadherin in gastric cancer has implications for targeted chemoprevention and therapy.


Assuntos
Humanos , Anticorpos/imunologia , Antineoplásicos/farmacologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Dinoprostona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/antagonistas & inibidores
3.
Experimental & Molecular Medicine ; : 428-436, 2010.
Artigo em Inglês | WPRIM | ID: wpr-27760

RESUMO

Inadequate apoptosis contributes to synovial hyperplasia in rheumatoid arthritis (RA). Recent study shows that low expression of Puma might be partially responsible for the decreased apoptosis of fibroblast-like synoviocytes (FLS). Slug, a highly conserved zinc finger transcriptional repressor, is known to antagonize apoptosis of hematopoietic progenitor cells by repressing Puma transactivation. In this study, we examined the expression and function of Slug in RA FLS. Slug mRNA expression was measured in the synovial tissue (ST) and FLS obtained from RA and osteoarthritis patients. Slug and Puma mRNA expression in FLS by apoptotic stimuli were measured by real-time PCR analysis. FLS were transfected with control siRNA or Slug siRNA. Apoptosis was quantified by trypan blue exclusion, DNA fragmentation and caspase-3 assay. RA ST expressed higher level of Slug mRNA compared with osteoarthritis ST. Slug was significantly induced by hydrogen peroxide (H2O2) but not by exogenous p53 in RA FLS. Puma induction by H2O2 stimulation was significantly higher in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. After H2O2 stimulation, viable cell number was significantly lower in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. Apoptosis enhancing effect of Slug siRNA was further confirmed by ELISA that detects cytoplasmic histone-associated DNA fragments and caspase-3 assay. These data demonstrate that Slug is overexpressed in RA ST and that suppression of Slug gene facilitates apoptosis of FLS by increasing Puma transactivation. Slug may therefore represent a potential therapeutic target in RA.


Assuntos
Humanos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Artrite Reumatoide/genética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/farmacologia , Membrana Sinovial/citologia , Fatores de Transcrição/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Transfecção
4.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 447-460
Artigo em Inglês | IMSEAR | ID: sea-135228

RESUMO

Current therapeutic approaches for the treatment of asthma have limitations in their ability to target all the features of the disease. Indeed, existing pharmacological asthma therapies are based on decades old strategies that were developed prior to the rapid growth in knowledge stemming from cell and molecular biology in the past decade. Thus, there is an unmet need for developing new drugs to target these features along with improved efficacy and safety. In the present review, the limitations of prevalent pharmacological asthma therapy are discussed briefly, and some explanations are suggested as to why new therapeutic targets are required to treat asthma, and finally directions for novel asthma therapies are proposed.


Assuntos
Animais , Asma/tratamento farmacológico , Asma/enzimologia , Asma/genética , Asma/metabolismo , Broncodilatadores/metabolismo , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Citocinas/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Oligonucleotídeos/metabolismo , Oligonucleotídeos/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores
5.
J Biosci ; 2007 Sep; 32(6): 1133-8
Artigo em Inglês | IMSEAR | ID: sea-110932

RESUMO

Beta-catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, beta-catenin is targeted to ubiquitin-proteasome-mediated degradation. Here we present the functional characterization of E3-ubiquitin ligase encoded by cul4B. RNAi-mediated knock-down of Cul4B in a mouse cell line C3H T10 (1/2) results in an increase in beta-catenin levels. Loss-of-function mutation in Drosophila cul4 also shows increased beta-catenin/Armadillo levels in developing embryos and displays a characteristic naked-cuticle phenotype. Immunoprecipitation experiments suggest that Cul4B and beta-catenin are part of a signal complex in Drosophila, mouse and human. These preliminary results suggest a conserved role for Cul4B in the regulation of beta-catenin levels.


Assuntos
Animais , Animais Geneticamente Modificados , Proteínas do Domínio Armadillo/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas Culina/genética , Regulação para Baixo/genética , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/genética , Humanos , Larva/genética , Camundongos , Camundongos Endogâmicos C3H , Fatores de Transcrição/antagonistas & inibidores , Ubiquitina-Proteína Ligases/fisiologia , beta Catenina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA