Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Physiologica Sinica ; (6): 659-670, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007781

RESUMO

Guanine nucleotide exchange factor Kalirin-7 (Kal-7) is a key factor in synaptic plasticity and plays an important regulatory role in the brain. Abnormal synaptic function leads to the weakening of cognitive functions such as learning and memory, accompanied by abnormal expression of Kal-7, which in turn induces a variety of neurodegenerative diseases. Exercise can upregulate the expression of Kal-7 in related brain regions to alleviate neurodegenerative diseases. By reviewing the literature on Kal-7 and neurodegenerative diseases, as well as the research progress of exercise intervention, this paper summarizes the role and possible mechanism of Kal-7 in the improvement of neurodegenerative diseases by exercise and provides a new rationale for the basic and clinical research on the prevention and treatment of neurodegenerative diseases by exercise.


Assuntos
Humanos , Doenças Neurodegenerativas/terapia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Terapia por Exercício
2.
Asian Journal of Andrology ; (6): 337-344, 2019.
Artigo em Inglês | WPRIM | ID: wpr-1009691

RESUMO

To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l-1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02-0.1 μmol l-1), whereas higher concentrations (>5 μmol l-1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.


Assuntos
Humanos , Masculino , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Acrossomo/metabolismo , Reação Acrossômica/efeitos dos fármacos , Calcimicina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Exocitose/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espermatozoides/metabolismo , Tapsigargina/farmacologia
3.
Experimental & Molecular Medicine ; : 483-491, 2012.
Artigo em Inglês | WPRIM | ID: wpr-192554

RESUMO

Phosphatidylinositol 3-kinase (PI3K) is essential for both G protein-coupled receptor (GPCR)- and receptor tyrosine kinase (RTK)-mediated cancer cell migration. Here, we have shown that maximum migration is achieved by full activation of phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) in the presence of Gbetagamma and PI3K signaling pathways. Lysophosphatidic acid (LPA)-induced migration was higher than that of epidermal growth factor (EGF)-induced migration; however, LPA-induced activation of Akt was lower than that stimulated by EGF. LPA-induced migration was partially blocked by either Gbetagamma or RTK inhibitor and completely blocked by both inhibitors. LPA-induced migration was synergistically increased in the presence of EGF and vice versa. In correlation with these results, sphingosine-1-phosphate (S1P)-induced migration was also synergistically induced in the presence of insulin-like growth factor-1 (IGF-1). Finally, silencing of P-Rex1 abolished the synergism in migration as well as in Rac activation. Moreover, synergistic activation of MMP-2 and cancer cell invasion was attenuated by silencing of P-Rex1. Given these results, we suggest that P-Rex1 requires both Gbetagamma and PI3K signaling pathways for synergistic activation of Rac, thereby inducing maximum cancer cell migration and invasion.


Assuntos
Humanos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lisofosfolipídeos/farmacologia , Neoplasias/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA