Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
São Paulo; s.n; s.n; 2013. 198 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-846927

RESUMO

Algumas das estratégias utilizadas para entender a biologia de células tronco embrionária (CTE) são baseadas na identificação de cascatas de sinalização que induzem a diferenciação e auto-renovação das CTE através da interferência seletiva de processos específicos. A família das proteínas quinase C (PKC) é conhecida por participar dos processos de auto-renovação e diferenciação celular em CTE, entretanto, o papel específico das diferentes isoenzimas das PKCs ainda precisa ser elucidado. Desta forma investigamos. o papel das PKCs atípicas (aPKCs) em CTE indiferenciadas utilizando um inibidor específico para estas serina/ treonina quinases, o peptídeo pseudossubstrato das aPKCs, e fosfoproteômica. A maioria das proteinas identificadas cuja fosforilação reduziu após o tratamento com o inibidor das aPKC, são proteínas envolvidas com o metabolismo principalmente com a via glicolítica. Além disso, a inibição das aPKCs levou a redução do consumo de glicose, secreção de lactato, acompanhada da redução da atividade da lactato desidrogenase, e aumento da fosforilação oxidativa, sendo analisada através do consumo de oxigênio após o tratamento com oligomicina e FCCP. Verificamos também que as aPKCs são capazes de fosforilar diretamente a piruvato quinase. A glicólise aeróbica parece ser fundamental para a manutenção da indiferenciação das CTE, e demonstramos que as aPKCs participam deste processo auxiliando na auto-renovação das CTE indiferenciadas. Também observamos que as aPKCs assim como a PKCßI modulam a fosforilação da α-tubulina, porém ao passo que as aPKCs interagem com a α-tubulina durante a interfase, a PKCßI interage com a mesma apenas durate a mitose. Estes resultados motivaram a segunda parte da tese, na qual o papel da fosforilação da α-tubulina pela PKCßI foi investigado. O resíduo de treonina 253, conservado em diversas espécies de vertebrados e localizado na interface de polimerização entre a α- e a ß-tubulina foi identificado, como um novo sítio de fosforilação da α-tubulina pela PKCßI. Este sítio não está em um consenso linear para a PKC, entretanto é um consenso formado estruturalmente, onde aminoácidos básicos distantes na sequência linear se tornam justapostos na estrutura terciária da proteína. Estudos de simulação por dinâmica molecular demonstraram que a interação entre a α e ß-tubulina aumenta após esta fosforilação, uma vez que T253 fosforilada passa a interagir com K105, um residuo conservado na ß-tubulina. A fosforilação in vitro de α-tubulina aumenta a taxa de polimerização da tubulina e a inibição da PKCßI em células reduziu a taxa de repolimerização do microtubulo após o tratamento com nocodazol. Além disso, a importância da fosforilação deste sítio foi demonstrada pelo fato de que um mutante fosfomimético GFP-α-tubulina, T253E ser mais incorporado no fuso mitótico ao passo que T253A foi menos incorporado do que a proteína selvagem. Nossos dados suportam a hipótese que os consensos estruturais formados podem ser importantes sítios de reconhecimento pelas quinases e que a fosforilação de T253 da α-tubulina afeta a estabilidade do polímero. Em conclusão, utilizando métodos de fosfoproteômica e interferência seletiva de vias de sinalização, combinados a validações experimentais dos alvos identificados podemos propor a importância funcional das aPKCs e PKCßI em CTE indiferenciadas


Some of the strategies used to understand stem cell biology are based on the identification of signalling cascades that lead to differentiation and self-renewal of embryonic stem cells (ESC) by selective interference of specific signalling processes. The protein kinase C (PKC) family is known to participate in ESC self-renewal and differentiation, however, the specific role of the different PKC isoenzymes in these cells remains to be determined. Therefore, we investigated the role of atypical PKCs (aPKC) in undifferntiated ESC using a specific inhibitor for these serine/ threonine kinases, pseudo-substrate peptide of aPKCs, and phosphoproteomics. The majority of proteins whose phosphorylation decreased upon aPKC inhibition, are proteins involved in metabolism in particular with the glycolytic pathway. Besides that, inhibiton of aPKCs led to a decrease in glucose uptake and lactate secretion, followed by a decrease in lactate dehydrogenase activity, and an increase in mitochondrial activity as measured by oxygen consumption after treatment with olygomycin and a chemical uncoupler. We also verified that aPKCs are able to directly phosphorylated pyruvate kinase. Aerobic glicolysis seems to be fundamental for the maintainance of undifferentiated ESC, and we demonstrated that aPKCs participte in these processes helping to maintain self-renewal of undifferentiated ESC. We also observed that aPKCs as PKCßI modulate the phosphorylation of α-tubulin, however, while aPKCs interact with α-tubulin during interfase PKCßI interacts with α-tubulin only during mitosis. These results lead to the second part of this thesis. We investigated the role of α-tubulina phosphorylation by PKCßI. Indentifying threonine 253, a conserved residue in several vertebrate species, of localized at the polymerization interface between α- and ß-tubulin, as a phosphorylation site of α-tubulin by PKCßI. This site is not in a linear consensus for PKC, however, it is in a structuraly formed consensus, where basic aminoacids distant in the linear sequence are juxtaposed in the three dimentional protein structure. Simulation studies by molecular dynamics show that the interaction between α and ß-tubulin increases upon this phosphorylation, once, phosphorylated T253 interacts with com K105, a conserved residue in ß-tubulin. The in vitro phosphorylation of α-tubulin increased tubulin polymerization rate and inhibiton of PKCßI in cells reduced repolimeration rate of microtubles upon treatment with nocodazole. Besides that, the importance of this phosphorylation site were demonstrated by the fact that a phosphomimetic mutant GFP-α-tubulina, T253E is more incorporated in mitotic fuses while T253A is less than wild type. Our data support the hypothesis that structural consensus may be important sites recognized and that T253 phosphorylation of α-tubulin afects the polymer stability. In conclusion, using phosphoproteomics methods and selective interference of signal transduction pathways combined with experimental validation studies of the identified targets we can propose roles for aPKCs and PKCßI in undifferentiated ESC


Assuntos
Células-Tronco Embrionárias/classificação , Proteína Quinase C beta/análise , Estudo de Validação , Fracionamento Celular/métodos , Metabolismo/genética , Nocodazol/análise , Fosforilação/genética , Proteína Quinase C/análise , Remodelação do Consumo , Tubulinos/crescimento & desenvolvimento , Eletroforese em Gel Diferencial Bidimensional/métodos
2.
Indian J Hum Genet ; 2009 Sept; 15(3): 121-124
Artigo em Inglês | IMSEAR | ID: sea-138884

RESUMO

Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4+ regulatory T cells and has an important role on cell survival or cell death in CD4+ T cells. Little is known about the expression of GITR on human CD8+ T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8+ T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8+ T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8+ T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8+ T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8+ cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8+ T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8+ cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8+ cytotoxic T cell response in translational research.


Assuntos
Linfócitos T CD8-Positivos , Morte Celular/genética , Sobrevivência Celular/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Fosforilação/genética
3.
Experimental & Molecular Medicine ; : 765-771, 2009.
Artigo em Inglês | WPRIM | ID: wpr-193563

RESUMO

Timely cell cycle regulation is conducted by sequential activation of a family of serine-threonine kinases called cycle dependent kinases (CDKs). Tight CDK regulation involves cyclin dependent kinase inhibitors (CKIs) which ensure the correct timing of CDK activation in different phases of the cell cycle. One CKI of importance is p27(KIP1). The regulation and cellular localization of p27(KIP1) can result in biologically contradicting roles when found in the nucleus or cytoplasm of both normal and tumor cells. The p27(KIP1) protein is mainly regulated by proteasomal degradation and its downregulation is often correlated with poor prognosis in several types of human cancers. The protein can also be functionally inactivated by cytoplasmic localization or by phosphorylation. The p27(KIP1) protein is an unconventional tumor suppressor because mutation of its gene is extremely rare in tumors, implying the normal function of the protein is deranged during tumor development. While the tumor suppressor function is mediated by p27(KIP1)'s inhibitory interactions with the cyclin/CDK complexes, its oncogenic function is cyclin/CDK independent, and in many cases correlates with cytoplasmic localization. Here we review the basic features and novel aspects of the p27(KIP1) protein, which displays genetically separable tumor suppressing and oncogenic functions.


Assuntos
Animais , Humanos , Quinases Ciclina-Dependentes/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Neoplasias/genética , Fosforilação/genética , Transporte Proteico/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA