Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 53(3): e8853, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1089343

RESUMO

Anaphylactic shock can be defined as an acute syndrome, and it is the most severe clinical manifestation of allergic diseases. Anaphylactoid reactions are similar to anaphylactic events but differ in the pathophysiological mechanism. Nitric oxide (NO) inhibitors during anaphylaxis suggest that NO might decrease the signs and symptoms of anaphylaxis but exacerbate associated vasodilation. Therefore, blocking the effects of NO on vascular smooth muscle by inhibiting the guanylate cyclase (GC) would be a reasonable strategy. This study aimed to investigate the effects of NO/cGMP pathway inhibitors methylene blue (MB), Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and indigo carmine (IC) in shock induced by compound 48/80 (C48/80) in rats. The effect was assessed by invasive blood pressure measurement. Shock was initiated by C48/80 intravenous bolus injection 5 min before (prophylactic) or after (treatment) the administration of the inhibitors MB (3 mg/kg), L-NAME (1 mg/kg), and IC (3 mg/kg). Of the groups that received drugs as prophylaxis for shock, only the IC group did not present the final systolic blood pressure (SBP) better than the C48/80 group. Regarding shock treatment with the drugs tested, all groups had the final SBP similar to the C48/80group. Altogether, our results suggested that inhibition of GC and NO synthase in NO production pathway was not sufficient to revert hypotension or significantly improve survival.


Assuntos
Animais , Masculino , Ratos , GMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Anafilaxia/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Ratos Wistar , NG-Nitroarginina Metil Éster/administração & dosagem , Modelos Animais de Doenças , Índigo Carmim/administração & dosagem , Azul de Metileno/administração & dosagem
3.
Braz. j. med. biol. res ; 47(12): 1057-1061, 12/2014. graf
Artigo em Inglês | LILACS | ID: lil-727658

RESUMO

Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.


Assuntos
Animais , Masculino , Dor Aguda/prevenção & controle , Monóxido de Carbono/metabolismo , GMP Cíclico/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Dor Nociceptiva/prevenção & controle , Transtornos de Estresse Traumático Agudo/metabolismo , GMP Cíclico/antagonistas & inibidores , Deuteroporfirinas/metabolismo , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme/análogos & derivados , Heme/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Dor Nociceptiva/metabolismo , Oxidiazóis/farmacologia , Medição da Dor/métodos , Ratos Wistar , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA