Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 3922-3933, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981525

RESUMO

Through the non-targeted metabolomics study of endogenous substances in the liver and serum of hyperlipidemia rats, the biomarkers related to abnormal lipid metabolism in hyperlipidemia rats were found, and the target of ginsenoside Rb_1 in improving hyperlipidemia was explored and its mechanism was elucidated. The content of serum biochemical indexes of rats in each group was detected by the automatic biochemical analyzer. The metabolite profiles of liver tissues and serum of rats were analyzed by HPLC-MS. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to compare and analyze the metabolic data in the normal group, the hyperlipidemia group, and the ginsenoside Rb_1 group, and screen potential biomar-kers. The related metabolic pathways were further constructed by KEGG database analysis. The results showed that hyperlipemia induced dyslipidemia in rats, which was alleviated by ginsenoside Rb_1. The non-targeted metabolomics results showed that there were 297 differential metabolites in the liver tissues of hyperlipidemia rats, 294 differential metabolites in the serum samples, and 560 diffe-rential metabolites in the hyperlipidemia rats treated by ginsenoside Rb_1. Perillic acid and N-ornithyl-L-taurine were common metabolites in the liver and serum samples, which could be used as potential biomarkers for ginsenoside Rb_1 in the improvement of hyperlipidemia. As revealed by pathway enrichment in the liver and serum, ginsenoside Rb_1 could participate in the metabolic pathway of choline in both the liver and serum. In addition, ginsenoside Rb_1 also participated in the ABC transporter, alanine, aspartic acid, and glutamate metabolism, protein digestion and absorption, β-alanine metabolism, taurine and hypotaurine metabolism, caffeine metabolism, valine, leucine, and isoleucine biosynthesis, arachidonic acid metabolism, and methionine and cysteine metabolism to improve dyslipidemia in rats.


Assuntos
Ratos , Animais , Hiperlipidemias/tratamento farmacológico , Metaboloma , Ginsenosídeos/metabolismo , Metabolismo dos Lipídeos , Metabolômica/métodos , Fígado/metabolismo , Biomarcadores , Taurina
2.
China Journal of Chinese Materia Medica ; (24): 4596-4604, 2019.
Artigo em Chinês | WPRIM | ID: wpr-1008234

RESUMO

Ginsenoside F1 is a rare ginsenoside in medicinal plants such as Panax ginseng,P. notogingseng and P. quinquefolius. It has strong pharmacological activities of anti-tumor,anti-oxidation and anti-aging. In order to directly produce ginsenoside F1 by using inexpensive raw materials such as glucose,we integrated the codon-optimized P.ginseng dammarenediol-Ⅱ synthase(Syn Pg DDS),P.ginseng protopanaxadiol synthase(Syn Pg PPDS),P. ginseng protopanaxatriol synthase(Syn Pg PPTS) genes and Arabidopsis thaliana cytochrome P450 reductase(At CPR1) gene into triterpene chassis strain BY-T3. The transformant BY-PPT can produce protopanaxatriol. Then we integrated the Sacchromyces cerevisiae phosphoglucomutase 1(PGM1),phosphoglucomutase 2(PGM2) and UDP-glucose pyrophosphorylase 1(UGP1) genes into chassis strain BY-PPT. The UDP-glucose supply module increased UDP-glucose production by 8. 65 times and eventually reached to 44. 30 mg·L-1 while confirmed in the transformant BY-PPT-GM. Next,we integrated the UDPglucosyltransferase Pg3-29 gene which can catalyze protopanaxatriol to produce ginsenoside F1 into chassis strain BY-PPT-GM. The transformant BY-F1 produced a small amount of ginsenoside F1 which was measured as 0. 5 mg·L-1. After the fermentation process was optimized,the titer of ginsenoside F1 could be increased by 900 times to 450. 5 mg·L-1. The high-efficiency UDP-glucose supply module in this study can provide reference for the construction of cell factories for production of saponin,and provide an important basis for further obtaining high-yield ginsenoside yeast cells.


Assuntos
Ginsenosídeos/metabolismo , Glucose , Panax , Saccharomyces cerevisiae/metabolismo , Uridina Difosfato Glucose
3.
Braz. j. med. biol. res ; 52(9): e8525, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011614

RESUMO

Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1β, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1β by suppressing the increase in IL-1β, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1β-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1β to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Condrócitos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Interleucina-1beta/efeitos dos fármacos , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Dinoprostona/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Dor Lombar/metabolismo , Óxido Nítrico Sintase/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Ginsenosídeos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Agrecanas/metabolismo , Interleucina-1beta/metabolismo , Ubiquitinação , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Inflamação/metabolismo
4.
Electron. j. biotechnol ; 26: 20-26, Mar. 2017. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1009753

RESUMO

Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of ß-glucosidase-producing microorganisms were isolated from soil. Of these, strain K35 showed excellent activity for converting major ginsenosides into rare ginsenosides, and a NCBI BLAST of its 16S rDNA gene sequence showed that it was most closely related to Penicillium sp. (HQ608083.1). Strain K35 was used to ferment the adventitious root extract, and the fermentation products were analyzed by high-performance liquid chromatography. The results showed that the content of the rare ginsenoside CK was 0.253 mg mL-1 under the optimal converting conditions of 9 d of fermentation at pH 7.0 in LL medium, which was significantly higher than that in the adventitious roots of ginseng. Conclusion: These findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.


Assuntos
beta-Glucosidase/metabolismo , Raízes de Plantas/metabolismo , Ginsenosídeos/metabolismo , Panax/metabolismo , Penicillium , Biotransformação , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Reatores Biológicos , Ginsenosídeos/isolamento & purificação , Fermentação , Panax/crescimento & desenvolvimento , Panax/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA