Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 15(4): 2-2, July 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-646952

RESUMO

Background: For successful in vitro plant regeneration, plant cell lines with multiple transgene integration and low transgene expression levels need to be ruled out. Although real-time polymerase chain reaction (RT-PCR) is a rapid way to accomplish this, it is also expensive and typically limits the size of the target sequence. Quantitative competitive PCR (QC-PCR) is proven to be a safe and accurate method for determination of both copy number and quantification of transcript levels of synthetic transgenes in transformed plants. Results: The glyphosate oxidoreductase genewas chemically synthesized and used to transform Brassica napus L. via Agrobactrium-mediated transformation. A construct containing the mutated form of a synthetic glyphosate oxidoreductase (gox) gene (internal standard) was prepared. Gene copy number was estimated in nine independent transgenic lines using QC-PCR as well as the standard method of Southern blot analysis. By quantitative RT-PCR, transcript levels were also determined in these lines. High (> 3), medium to high (2.2-3), medium to low (1-2.2), and low (< 1) levels of transcript were detected. Conclusions: No direct relationship was found between copy number and transgene expression levels. QC-PCR method could be implemented to screen putative transgenic plants and quickly select single T-DNA inserts. QC-PCR methods and the prepared competitor construct may be useful for future quantification of commercial transgenic food and feed.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Glicina/genética , Oxirredutases/genética , Reação em Cadeia da Polimerase/métodos , Glicina/análogos & derivados , Glicina/fisiologia , Oxirredutases/fisiologia , Transcrição Gênica , Transgenes
2.
Artigo em Inglês | IMSEAR | ID: sea-139892

RESUMO

Background : Oral submucous fibrosis (OSF) may be considered a collagen metabolic disorder resulting from areca-nut alkaloid exposure and individual variation in collagen metabolism. Due to the complexity of OSF pathogenesis, it is important to elucidate independent and interactive effects of polymorphisms of collagen-related genes on OSF risk. Materials and Methods : This study is focused on seven polymorphisms (SNPs) of transforming growth factor-beta-1 (TGF-beta-1) gene in patients with oral submucous fibrosis (OSF), belonging to south Indian ethnic extraction. The mean age at presentation was 43.9 years, range 23-72 years (n=50, M:F ratio, 2.6:1). DNA samples from 50 subjects of the same ethnic group and comparable demographic features who have had practiced the habit of areca-chewing of almost equal duration, but remained free of disease constituted the controls. All DNA samples were collected progressively and purified from peripheral blood employing standard protocols and tested for SNPs. They included two polymorphisms in the promoter region (C-509T and G-800A), three polymorphisms in exon-1 (Arg25Pro(G915C), Leu10Pro(T869C), Glu47Gly(A979G) and two in 5 ͲUTR regions (C→T(rs13306708) and G→A (rs9282871). The extracted DNA samples along with the primers underwent PCR amplification and the genotypic and allelic frequencies were calculated. All calculations were performed using the SPSS software. The PCR products were purified and subsequently sequenced using Flour S™ multi-imager system (Biorad). The sequenced data were analyzed using the BioEdit sequence analysis software. Results : Out of the seven polymorphisms analyzed, six such as two in the promoter region, three in exon-1 and one in 5¢UTR were found to have a " P" value above 0.05 and hence were not significant. The C→T transition (rs13306708) in the 5¢UTR region recorded a " P" value of 0.03 on comparison and hence was found to be significant. The allelic frequencies for this C→T transition in patients were 68.7% C and 31.2% T (27CC, 15CT, 8TT) and that in controls were 89.5% C and 10.4% T (42CC, 6CT, 2TT). Conclusions : The polymorphism in 5¢UTR C-T in TGF beta 1 gene has a significant association with OSF, being a prime determinant in the pro-angiogenic pathway which has got direct bearing with the pathophysiology of the disease. The proximity of this polymorphism to the transcription site and the associated risk involved is discussed.


Assuntos
Regiões 5' não Traduzidas/genética , Adenina , Adulto , Idoso , Areca , Arginina/genética , Mapeamento Cromossômico , Citosina , Etnicidade/genética , Éxons/genética , Feminino , Frequência do Gene/genética , Genótipo , Glutamina/genética , Glicina/genética , Guanina , Humanos , Índia , Leucina/genética , Masculino , Pessoa de Meia-Idade , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/imunologia , Polimorfismo de Nucleotídeo Único/genética , Prolina/genética , Regiões Promotoras Genéticas/genética , Timina , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
3.
Journal of Korean Medical Science ; : 93-96, 1999.
Artigo em Inglês | WPRIM | ID: wpr-92734

RESUMO

A 10-year-old male patient affected by type 2 von Willebrand disease (vWD) and his family members were investigated by hemostatic and molecular genetic studies. The propositus, who experienced frequent bleeding episodes, was characterized by a normal level of von Willebrand factor (vWF) antigen (54%), reduced vWF ristocetin cofactor activity (5%), decreased factor VIII clotting activity (25%) and absent high molecular weight multimers in the plasma. An exon 28 fragment coding for the A1 and A2 domains was amplified by polymerase chain reaction and sequenced. We found a heterozygous mutation (G4022A), producing an additional PstI restriction site, which resulted in the substitution of Arg578Gln. Family studies, including the parents and a brother, were negative for this mutation and vWF abnormalities were not observed. We confirmed that G to A mutation in the region of the platelet glycoprotein Ib binding domain of vWF causes the qualitative type 2 defect in von Willebrand disease.


Assuntos
Criança , Humanos , Masculino , Alanina/genética , Glicina/genética , Mutação Puntual , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA