Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1089349

RESUMO

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Assuntos
Humanos , Nefropatias Diabéticas/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , RNA Longo não Codificante/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Regulação para Baixo , Regulação para Cima , Células Cultivadas , MicroRNAs/metabolismo , Nefropatias Diabéticas/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Asian Journal of Andrology ; (6): 460-467, 2019.
Artigo em Inglês | WPRIM | ID: wpr-1009707

RESUMO

One of the factors promoting tumoral progress is the abnormal activation of the epithelial-mesenchymal transition (EMT) program which has been associated with chemoresistance in tumoral cells. The transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), a key EMT activator, has recently been related to docetaxel resistance, the main chemotherapeutic used in advanced prostate cancer treatment. The mechanisms involved in this protective effect are still unclear. In a previous work, we demonstrated that ZEB1 expression induced an EMT-like phenotype in prostate cancer cell lines. In this work, we used prostate cancer cell lines 22Rv1 and DU145 to study the effect of ZEB1 modulation on docetaxel resistance and its possible mechanisms. The results showed that ZEB1 overexpression conferred to 22Rv1 cell resistance to docetaxel while its silencing made DU145 cells more sensitive to it. Analysis of resistance markers showed no presence of ATP-binding cassette subfamily B member 1 (MDR1) and no changes in breast cancer resistance protein (BCRP) or ATP-binding cassette subfamily C member 10 (MRP7). However, a correlation between ZEB1, multidrug resistance-associated protein 1 (MRP1), and ATP-binding cassette subfamily C member 4 (MRP4) expression was observed. MRP4 inhibition, using MK571, resensitized cells with ZEB1 overexpression to docetaxel treatment. In addition, modulation of ZEB1 and subsequent change in MRP4 expression correlated with a lower apoptotic response to docetaxel, characterized by lower B-cell lymphoma 2 (Bcl2), high BCL2-associated X protein (Bax), and high active caspase 3 expression. The response to docetaxel in our model seems to be mediated mainly by activation of the apoptotic death program. Our results showed that modulation of MRP4 could be a mediator of ZEB1-related resistance to docetaxel in prostate cancer, making it a possible marker for chemotherapy response in patients who do not express MDR1.


Assuntos
Humanos , Masculino , Antineoplásicos/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inativação Gênica , Neoplasias da Próstata/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
Asian Journal of Andrology ; (6): 294-299, 2018.
Artigo em Inglês | WPRIM | ID: wpr-1009562

RESUMO

It has been reported that one of the factors that promotes tumoral progression is the abnormal activation of the epithelial-mesenchymal transition program. This process is associated with tumoral cells acquiring invasive and malignant properties and has the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) as one of its main activators. However, the role of ZEB1 in promoting malignancy in prostate cancer (PCa) is still unclear. Here, we report that ZEB1 expression correlates with Gleason score in PCa samples and that expression of ZEB1 regulates epithelial-mesenchymal transition and malignant characteristics in PCa cell lines. The results showed that ZEB1 expression is higher in samples of higher malignancy and that overexpression of ZEB1 was able to induce epithelial-mesenchymal transition by upregulating the mesenchymal marker Vimentin and downregulating the epithelial marker E-Cadherin. On the contrary, ZEB1 silencing repressed Vimentin expression and upregulated E-Cadherin. ZEB1 expression conferred enhanced motility and invasiveness and a higher colony formation capacity to 22Rv1 cells whereas DU145 cells with ZEB1 silencing showed a decrease in those same properties. The results showed that ZEB1 could be a key promoter of tumoral progression toward advanced stages of PCa.


Assuntos
Humanos , Masculino , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Gradação de Tumores , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia , Vimentina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA