Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Neuroscience Bulletin ; (6): 90-102, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010647

RESUMO

Retrograde adeno-associated viruses (AAVs) are capable of infecting the axons of projection neurons and serve as a powerful tool for the anatomical and functional characterization of neural networks. However, few retrograde AAV capsids have been shown to offer access to cortical projection neurons across different species and enable the manipulation of neural function in non-human primates (NHPs). Here, we report the development of a novel retrograde AAV capsid, AAV-DJ8R, which efficiently labeled cortical projection neurons after local administration into the striatum of mice and macaques. In addition, intrastriatally injected AAV-DJ8R mediated opsin expression in the mouse motor cortex and induced robust behavioral alterations. Moreover, AAV-DJ8R markedly increased motor cortical neuron firing upon optogenetic light stimulation after viral delivery into the macaque putamen. These data demonstrate the usefulness of AAV-DJ8R as an efficient retrograde tracer for cortical projection neurons in rodents and NHPs and indicate its suitability for use in conducting functional interrogations.


Assuntos
Animais , Haplorrinos , Axônios , Neurônios Motores , Interneurônios , Macaca , Dependovirus/genética , Vetores Genéticos
2.
Neuroscience Bulletin ; (6): 1683-1702, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010651

RESUMO

Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.


Assuntos
Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Parvalbuminas/metabolismo , Doença de Parkinson/patologia , Neurônios/metabolismo , Interneurônios/fisiologia , Modelos Animais de Doenças , Encéfalo/patologia
3.
Neuroscience Bulletin ; (6): 1-13, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971533

RESUMO

Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.


Assuntos
Segmento Inicial do Axônio , Axônios/fisiologia , Neurônios , Sinapses/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia , Potenciais de Ação/fisiologia
4.
Neuroscience Bulletin ; (6): 576-588, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982430

RESUMO

Autapses selectively form in specific cell types in many brain regions. Previous studies have also found putative autapses in principal spiny projection neurons (SPNs) in the striatum. However, it remains unclear whether these neurons indeed form physiologically functional autapses. We applied whole-cell recording in striatal slices and identified autaptic cells by the occurrence of prolonged asynchronous release (AR) of neurotransmitters after bursts of high-frequency action potentials (APs). Surprisingly, we found no autaptic AR in SPNs, even in the presence of Sr2+. However, robust autaptic AR was recorded in parvalbumin (PV)-expressing neurons. The autaptic responses were mediated by GABAA receptors and their strength was dependent on AP frequency and number. Further computer simulations suggest that autapses regulate spiking activity in PV cells by providing self-inhibition and thus shape network oscillations. Together, our results indicate that PV neurons, but not SPNs, form functional autapses, which may play important roles in striatal functions.


Assuntos
Parvalbuminas/metabolismo , Corpo Estriado/metabolismo , Interneurônios/fisiologia , Neurônios/metabolismo , Neostriado
5.
Neuroscience Bulletin ; (6): 1069-1086, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982423

RESUMO

Cortical interneurons can be categorized into distinct populations based on multiple modalities, including molecular signatures and morpho-electrical (M/E) properties. Recently, many transcriptomic signatures based on single-cell RNA-seq have been identified in cortical interneurons. However, whether different interneuron populations defined by transcriptomic signature expressions correspond to distinct M/E subtypes is still unknown. Here, we applied the Patch-PCR approach to simultaneously obtain the M/E properties and messenger RNA (mRNA) expression of >600 interneurons in layer V of the mouse somatosensory cortex (S1). Subsequently, we identified 11 M/E subtypes, 9 neurochemical cell populations (NCs), and 20 transcriptomic cell populations (TCs) in this cortical lamina. Further analysis revealed that cells in many NCs and TCs comprised several M/E types and were difficult to clearly distinguish morpho-electrically. A similar analysis of layer V interneurons of mouse primary visual cortex (V1) and motor cortex (M1) gave results largely comparable to S1. Comparison between S1, V1, and M1 suggested that, compared to V1, S1 interneurons were morpho-electrically more similar to M1. Our study reveals the presence of substantial M/E variations in cortical interneuron populations defined by molecular expression.


Assuntos
Camundongos , Animais , Neocórtex/fisiologia , Camundongos Transgênicos , Interneurônios/fisiologia
6.
Rev. Fac. Odontol. (B.Aires) ; 38(90): 29-37, 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1553776

RESUMO

Esta revisión busca proporcionar a los profesionales de la salud una mayor comprensión del dolor para su actividad clínica-asistencial. Basados en la hipóte-sis de neuroplasticidad presentada inicialmente por Ramón y Cajal y la teoría de la compuerta en la vía dolorosa presentada por Melzack y Wall, se ha ela-borado una revisión bibliográfica con el objetivo de abordar la modulación de la vía nociceptiva desde un punto de vista fisiopatológico. Asimismo, se presen-tan los principales resultados obtenidos durante los últimos años en nuestro laboratorio usando ratas Wistar hembras como modelo de dolor experimental. Finalmente, se describe un circuito original de modu-lación central a nivel del subnúcleo caudal del trigé-mino con una visión integral de los componentes del sistema nociceptivo orofacial, para ayudar al clínico a comprender situaciones de sensibilización central con perpetuación del dolor y cómo paulatinamente el sistema nervioso central pone en marcha un sistema de modulación para adaptarse y alcanzar un estado similar al basal (AU)


This review aims to provide health professionals with a better understanding of pain for their clinical-care activity. Based on the neuroplasticity hypothesis initially presented by Ramón and Cajal, and the gate theory in the pain pathway presented by Melzack and Wall, a literature review has been carried out with the aim of addressing the modulation of the nociceptive pathway from a pathophysiological point of view. The main results obtained in recent years in our laboratory using female Wistar rats as an experimental pain model are also presented. Finally, an original central modulation circuit at the level of the caudal trigeminal subnucleus is described with a comprehensive view of the components of the orofacial nociceptive system, to help the clinician to understand situations of central sensitization with perpetuation of pain and how the central nervous system gradually sets in motion a modulation system to adapt and reach a state similar to the basal one (AU)


Assuntos
Humanos , Animais , Ratos , Dor/fisiopatologia , Sistema Nervoso Central/fisiologia , Nociceptividade/fisiologia , Plasticidade Neuronal/fisiologia , Astrócitos , Ratos Wistar , Hiperalgesia/fisiopatologia , Interneurônios
7.
Neuroscience Bulletin ; (6): 249-262, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929098

RESUMO

The radial migration of cortical pyramidal neurons (PNs) during corticogenesis is necessary for establishing a multilayered cerebral cortex. Neuronal migration defects are considered a critical etiology of neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia, epilepsy, and intellectual disability (ID). TRIO is a high-risk candidate gene for ASDs and ID. However, its role in embryonic radial migration and the etiology of ASDs and ID are not fully understood. In this study, we found that the in vivo conditional knockout or in utero knockout of Trio in excitatory precursors in the neocortex caused aberrant polarity and halted the migration of late-born PNs. Further investigation of the underlying mechanism revealed that the interaction of the Trio N-terminal SH3 domain with Myosin X mediated the adherence of migrating neurons to radial glial fibers through regulating the membrane location of neuronal cadherin (N-cadherin). Also, independent or synergistic overexpression of RAC1 and RHOA showed different phenotypic recoveries of the abnormal neuronal migration by affecting the morphological transition and/or the glial fiber-dependent locomotion. Taken together, our findings clarify a novel mechanism of Trio in regulating N-cadherin cell surface expression via the interaction of Myosin X with its N-terminal SH3 domain. These results suggest the vital roles of the guanine nucleotide exchange factor 1 (GEF1) and GEF2 domains in regulating radial migration by activating their Rho GTPase effectors in both distinct and cooperative manners, which might be associated with the abnormal phenotypes in neurodevelopmental disorders.


Assuntos
Humanos , Transtorno do Espectro Autista/metabolismo , Movimento Celular/genética , Interneurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
8.
Neuroscience Bulletin ; (6): 1325-1338, 2021.
Artigo em Inglês | WPRIM | ID: wpr-922632

RESUMO

A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-N


Assuntos
Animais , Camundongos , Interneurônios/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Parvalbuminas/metabolismo
9.
Acta Physiologica Sinica ; (6): 295-305, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878258

RESUMO

Cortical GABAergic inhibitory neurons are composed of three major classes, each expressing parvalbumin (PV), somatostatin (SOM) and 5-hydroxytryptamine receptor 3A (Htr3a), respectively. Htr3a


Assuntos
Animais , Camundongos , Interneurônios/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Receptores 5-HT3 de Serotonina/genética , Serotonina , Somatostatina/metabolismo
10.
Acta Physiologica Sinica ; (6): 35-41, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878233

RESUMO

Fentanyl as a synthetic opioid works by binding to the mu-opioid receptor (MOR) in brain areas to generate analgesia, sedation and reward related behaviors. As we know, cerebellum is not only involved in sensory perception, motor coordination, motor learning and precise control of autonomous movement, but also important for the mood regulation, cognition, learning and memory. Previous studies have shown that functional MORs are widely distributed in the cerebellum, and the role of MOR activation in cerebellum has not been reported. The aim of the present study was to investigate the effects of fentanyl on air-puff stimulus-evoked field potential response in the cerebellar molecular layer using in vivo electrophysiology in mice. The results showed that perfusion of 5 μmol/L fentanyl on the cerebellar surface significantly inhibited the amplitude, half width and area under the curve (AUC) of sensory stimulation-evoked inhibitory response P1 in the molecular layer. The half-inhibitory concentration (IC


Assuntos
Animais , Camundongos , Cerebelo , Potenciais Evocados , Fentanila/farmacologia , Interneurônios , Estimulação Física
11.
Acta Physiologica Sinica ; (6): 1-9, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878229

RESUMO

Astrocytes are a heterogenous group of macroglia present in all regions of the brain and play critical roles in many aspects of brain development, function and disease. Previous studies suggest that the B-cell lymphoma-2 associated X protein (BAX)-dependent apoptosis plays essential roles in regulating neuronal number and achieving optimal excitation/inhibition ratio. The aim of the present paper was to study whether BAX regulates astrocyte distribution in a region-specific manner. Immunofluorescence staining of SOX9 was used to analyze and compare astrocyte density in primary somatosensory cortex, motor cortex, retrosplenial cortex and hippocampus in heterozygous and homozygous BAX knockout mice at age of six weeks when cortical development has finished and glia development has reached a relatively steady state. The results showed that astrocyte density varied significantly among different cortical subdivisions and between cortex and hippocampus. In contrast to the significant increase in GABAergic interneurons, the overall and region-specific astrocyte density remained unchanged in the cortex when BAX was absent. Interestingly, a significant reduction of astrocyte density was observed in the hippocampus of BAX knockout mice. These data suggest that BAX differentially regulates neurons and astrocytes in cortex as well as astrocytes in different brain regions during development. This study provided important information about the regional heterogeneity of astrocyte distribution and the potential contribution of BAX gene during development.


Assuntos
Animais , Camundongos , Astrócitos , Hipocampo , Interneurônios , Neurônios , Proteína X Associada a bcl-2/genética
12.
Neuroscience Bulletin ; (6): 497-506, 2019.
Artigo em Inglês | WPRIM | ID: wpr-775419

RESUMO

Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.


Assuntos
Animais , Moléculas de Adesão Celular Neuronais , Fisiologia , Células Cultivadas , Córtex Cerebral , Embriologia , Fisiologia , Neurônios GABAérgicos , Fisiologia , Interneurônios , Fisiologia , Proteínas de Membrana , Fisiologia , Proteínas do Tecido Nervoso , Fisiologia , Isoformas de Proteínas , Fisiologia , Células Piramidais , Fisiologia , Ratos Sprague-Dawley , Sinapses , Fisiologia
13.
Experimental Neurobiology ; : 529-536, 2019.
Artigo em Inglês | WPRIM | ID: wpr-763775

RESUMO

Stress can induce a serious epileptic encephalopathy that occurs during early infancy. Recent studies have revealed that prenatal stress exposure is a risk factor for the development of infantile spasms. Our previous work demonstrates that prenatal stress with betamethasone-induced alterations to the expression of the K⁺/Cl⁻ co-transporter (KCC2) in gamma-aminobutyric acid (GABA) interneurons lowers the seizure threshold in exposed animals. Here, we further investigated the mechanisms involved in this KCC2 dysfunction and explored possible treatment options. We stressed Sprague-Dawley rats prenatally and further treated dams with betamethasone on gestational day 15, which increases seizure susceptibility and NMDA (N-Methyl-D-aspartate)-triggered spasms on postnatal day 15. In this animal model, first, we evaluated baseline calpain activity. Second, we examined the cleavage and dephosphorylation of KCC2. Finally, we checked the effect of a calpain inhibitor on seizure occurrence. The phosphorylated-N-methyl-D-aspartate Receptor 2B (NR2B):non-phosphorylated NR2B ratio was found to be higher in the cortex of the prenatally stressed beta-methasone model. We further found that the betamethasone model exhibited increased phosphorylation of calpain-2 and decreased phosphorylation of KCC2 and Glutamic acid decarboxylase 67 (GAD67). After using a calpain inhibitor in prenatal-stress rats, the seizure frequency decreased, while latency increased. GABAergic depolarization was further normalized in prenatal-stress rats treated with the calpain inhibitor. Our study suggests that calpain-dependent cleavage and dephosphorylation of KCC2 decreased the seizure threshold of rats under prenatal stress. Calpain-2 functions might, thus, be targeted in the future for the development of treatments for epileptic spasms.


Assuntos
Animais , Humanos , Lactente , Recém-Nascido , Ratos , Betametasona , Encefalopatias , Calpaína , Epilepsia , Ácido gama-Aminobutírico , Glutamato Descarboxilase , Interneurônios , Modelos Animais , N-Metilaspartato , Fosforilação , Ratos Sprague-Dawley , Fatores de Risco , Convulsões , Espasmo , Espasmos Infantis
14.
Journal of Veterinary Science ; : e3-2019.
Artigo em Inglês | WPRIM | ID: wpr-758904

RESUMO

The development of long-term surviving fetal cell cultures from primary cell tissue from the developing brain is important for facilitating studies investigating neural development and for modelling neural disorders and brain congenital defects. The field faces current challenges in co-culturing both progenitors and neurons long-term. Here, we culture for the first time, porcine fetal cells from the dorsal telencephalon at embryonic day (E) 50 and E60 in conditions that promoted both the survival of progenitor cells and young neurons. We applied a novel protocol designed to collect, isolate and promote survival of both progenitors and young neurons. Herein, we used a combination of low amount of fetal bovine serum, together with pro-survival factors, including basic fibroblast growth factor and retinoic acid, together with arabinofuranosylcytosine and could maintain progenitors and facilitate in vitro differentiation into calbindin 1+ neurons and reelin+ interneurons for a period of 7 days. Further improvements to the protocol that might extend the survival of the fetal primary neural cells would be beneficial. The development of new porcine fetal culture methods is of value for the field, given the pig's neuroanatomical and developmental similarities to the human brain.


Assuntos
Humanos , Encéfalo , Calbindinas , Técnicas de Cultura de Células , Anormalidades Congênitas , Citarabina , Fator 2 de Crescimento de Fibroblastos , Técnicas In Vitro , Interneurônios , Neurônios , Células-Tronco , Telencéfalo , Tretinoína
15.
Neuroscience Bulletin ; (6): 992-1006, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775482

RESUMO

Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.


Assuntos
Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Química Encefálica , Genética , Fisiologia , Córtex Cerebral , Metabolismo , Patologia , Colecistocinina , Metabolismo , Epilepsia , Patologia , Regulação da Expressão Gênica , Fisiologia , Interneurônios , Metabolismo , Neuropeptídeo Y , Metabolismo , Parvalbuminas , Metabolismo , Fosfopiruvato Hidratase , Metabolismo , Somatostatina , Metabolismo , Tirosina 3-Mono-Oxigenase , Metabolismo
16.
Experimental Neurobiology ; : 120-128, 2018.
Artigo em Inglês | WPRIM | ID: wpr-714114

RESUMO

µ-opioid receptor (MOR) is a class of opioid receptors with a high affinity for enkephalins and beta-endorphin. In hippocampus, activation of MOR is known to enhance the neuronal excitability of pyramidal neurons, which has been mainly attributed to a disinhibition of pyramidal neurons via activating Gαi subunit to suppress the presynaptic release of GABA in hippocampal interneurons. In contrast, the potential role of MOR in hippocampal astrocytes, the most abundant cell type in the brain, has remained unexplored. Here, we determine the cellular and subcellular distribution of MOR in different cell types of the hippocampus by utilizing MOR-mCherry mice and two different antibodies against MOR. Consistent with previous findings, we demonstrate that MOR expression in the CA1 pyramidal layer is co-localized with axon terminals from GABAergic inhibitory neurons but not with soma of pyramidal neurons. More importantly, we demonstrate that MOR is highly expressed in CA1 hippocampal astrocytes. The ultrastructural analysis further demonstrates that the astrocytic MOR is localized in soma and processes, but not in microdomains near synapses. Lastly, we demonstrate that astrocytes in ventral tegmental area and nucleus accumbens also express MOR. Our results provide the unprecedented evidence for the presence of MOR in astrocytes, implicating potential roles of astrocytic MOR in addictive behaviors.


Assuntos
Animais , Camundongos , Anticorpos , Astrócitos , Comportamento Aditivo , beta-Endorfina , Encéfalo , Carisoprodol , Encefalinas , Ácido gama-Aminobutírico , Hipocampo , Interneurônios , Microscopia Eletrônica , Neurônios , Núcleo Accumbens , Terminações Pré-Sinápticas , Células Piramidais , Receptores Opioides , Sinapses , Área Tegmentar Ventral
17.
International Neurourology Journal ; : 90-98, 2018.
Artigo em Inglês | WPRIM | ID: wpr-715332

RESUMO

PURPOSE: The neurological molecular mechanisms underlying the voiding dysfunction associated with nonbacterial chronic prostatitis/chronic pelvic pain syndrome remain poorly understood. In this study, we assessed whether prostate inflammation activated bladder afferent neurons, leading to bladder dysfunction, and sought to elucidate the underlying mechanisms. METHODS: Thirty male Sprague-Dawley rats were divided into 3 groups: sham-saline, formalin-injected, and capsaicin-pretreated and formalin-injected. Chemical prostatitis was induced by 0.1 mL of 10% buffered formalin injected into the ventral prostate. Capsaicin was injected subcutaneously to desensitize capsaicin-sensitive nerves. In each group, conscious cystometry was performed, and c-fos expression within the spinal cord was determined immunocytochemically. Double immunofluorescent staining with c-fos and choline acetyltransferase (ChAT) was performed. On the third day after pseudorabies virus (PRV) infection, c-fos and PRV double-staining was performed. RESULTS: Intraprostatic formalin significantly increased the maximal voiding pressure and decreased the intercontraction interval, compared with controls. Pretreatment with capsaicin significantly reversed these effects. More c-fos-positive cells were observed in the sacral parasympathetic nucleus (SPN) and dorsal gray commissure (DCM) in the prostatitis group than in the sham group. c-fos-positive cells decreased in the capsaicin-pretreated group. Preganglionic neurons labeled by c-fos and ChAT were observed in the SPN in rats with prostatitis. Interneurons labeled by c-fos and PRV were identified in the DCM after PRV infection. CONCLUSIONS: Our results suggest that prostate inflammation activates afferent nerve fibers projecting to the lumbosacral spinal cord, producing reflex activation of spinal neurons innervating the bladder and bladder hyperreflexia. This is mediated by capsaicin-sensitive prostate afferent neurons.


Assuntos
Animais , Humanos , Masculino , Ratos , Capsaicina , Colina O-Acetiltransferase , Formaldeído , Herpesvirus Suídeo 1 , Inflamação , Interneurônios , Modelos Animais , Fibras Nervosas , Neurônios , Neurônios Aferentes , Dor Pélvica , Próstata , Prostatite , Ratos Sprague-Dawley , Reflexo , Reflexo Anormal , Medula Espinal , Bexiga Urinária
18.
Journal of Korean Neuropsychiatric Association ; : 108-118, 2018.
Artigo em Coreano | WPRIM | ID: wpr-714573

RESUMO

Although the biological causes of depression have been well established, the current use of antidepressants are still mostly based on the monoamine hypothesis of depression. However, monoamine antidepressants delay treatment of depression, and there is the problem of depressed patients who are resistant. Ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, is firstly introduced as an anesthetic. The hypothesis on the mechanism of ketamine as an antidepressant has been proposed through direct NMDAR inhibition, inhibition of γ-aminobutyric acid-ergic interneuron NMDARs and the role of ketamine metabolite (2R,6R)-hydroxynorcetamine (HNK). The ketamine also reverses the lack of synaptic connectivity and neurotrophic factors in depressed states by downstream mechanism of action. Through preclinical trials, there is a growing body of evidence indicating that ketamine has the potential for treatment of depression. In recent clinical studies, ketamine exhibits rapid-acting antidepressants effects and improvement of depression and even suicidality. This review examines current researches on molecular and cellular mechanisms of ketamine as an antidepressant, and reviews the current status of clinical studies, problems, and clinical applicability of ketamine.


Assuntos
Humanos , Antidepressivos , Depressão , Ácido Glutâmico , Interneurônios , Ketamina , N-Metilaspartato , Fatores de Crescimento Neural
19.
The Korean Journal of Physiology and Pharmacology ; : 419-425, 2018.
Artigo em Inglês | WPRIM | ID: wpr-727577

RESUMO

The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of µ-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective µ-opioid agonist, [D-Ala², NMe-Phe⁴, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by K⁺ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.


Assuntos
Animais , Camundongos , Analgésicos Opioides , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos , Interneurônios , Camundongos Transgênicos , Fibras Nervosas Amielínicas , Neurônios , Medula Espinal , Corno Dorsal da Medula Espinal , Substância Gelatinosa , Transmissão Sináptica
20.
The Korean Journal of Physiology and Pharmacology ; : 71-80, 2018.
Artigo em Inglês | WPRIM | ID: wpr-727936

RESUMO

In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to highfrequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an IC₅₀ value of 9.43 µM and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding (k₊₁) and unbinding (k₋₁) rate constants for the paroxetine effect were 4.5 µM⁻¹s⁻¹ and 35.8 s⁻¹, respectively, yielding a calculated K(D) value of 7.9 µM. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a usedependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.


Assuntos
Animais , Cricetinae , Feminino , Humanos , Ratos , Antidepressivos , Células Clonais , Comorbidade , Cricetulus , Depressão , Epilepsia , Incêndios , Interneurônios , Canais Iônicos , Neurônios , Ovário , Paroxetina , Técnicas de Patch-Clamp , Convulsões , Serotonina , Canais de Potássio Shaw , Cauda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA