Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 48(2): 326-332, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839372

RESUMO

Abstract Stress tolerance is a key attribute that must be considered when using yeast cells for industrial applications. High temperature is one factor that can cause stress in yeast. High environmental temperature in particular may exert a natural selection pressure to evolve yeasts into thermotolerant strains. In the present study, three yeasts (Saccharomyces cerevisiae, MC4, and Kluyveromyces marxianus, OFF1 and SLP1) isolated from hot environments were exposed to increased temperatures and were then compared with a laboratory yeast strain. Their resistance to high temperature, oxidative stress, and antioxidant response were evaluated, along with the fatty acid composition of their cell membranes. The SLP1 strain showed a higher specific growth rate, biomass yield, and biomass volumetric productivity while also showing lower duplication time, reactive oxygen species (ROS) production, and lipid peroxidation. In addition, the SLP1 strain demonstrated more catalase activity after temperature was increased, and this strain also showed membranes enriched in saturated fatty acids. It is concluded that the SLP1 yeast strain is a thermotolerant yeast with less oxidative stress and a greater antioxidant response. Therefore, this strain could be used for fermentation at high temperatures.


Assuntos
Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Kluyveromyces/fisiologia , Estresse Oxidativo , Antioxidantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Saccharomyces cerevisiae/química , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/efeitos da radiação , Kluyveromyces/química , Peroxidação de Lipídeos , Catalase/análise , Membrana Celular/química , Espécies Reativas de Oxigênio/metabolismo , Biomassa , Ácidos Graxos/análise , Temperatura Alta
2.
Braz. j. microbiol ; 44(4): 1067-1074, Oct.-Dec. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-705252

RESUMO

The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L-1 oNP min-1 g-1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.


Assuntos
Membrana Celular/efeitos dos fármacos , Etanol/toxicidade , Kluyveromyces/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Membrana Celular/fisiologia , Kluyveromyces/fisiologia , Modelos Estatísticos , Temperatura , Fatores de Tempo , beta-Galactosidase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA