Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | WPRIM | ID: wpr-1010566

RESUMO

A growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of Lactobacillus gasseri LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of L. gasseri LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with L. gasseri LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by L. gasseri LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal β‍-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by L. gasseri LA39. Thus, our data revealed that L. gasseri LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that L. gasseri LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.


Assuntos
Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Lactobacillus gasseri , Proteômica , Fígado/metabolismo , Biotransformação
2.
Braz. J. Pharm. Sci. (Online) ; 53(1): e16059, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839457

RESUMO

ABSTRACT Recent studies have shown a role of intestinal microbiota in obesity. The consumption of antibiotics in the last 70 years has led to changes in intestinal microbiota, which has led to weight gain and body fat accumulation. To evaluate the possibility of weight gain induced by antibiotics and the possible protective effect of probiotics, we divided 45 animals (Rattus norvegicus) into groups and administered the following treatments over two weeks: tetracycline, tetracycline + Lactobacillus gasseri, and NaCl. The animals were weighed over the course of 8 weeks, and at the end of the treatment period, they were measured and subjected to bioelectrical impedance analysis. The results show that the group receiving tetracycline alone had a higher body mass index (p=0.030), a greater Lee index (p=0.008), and a lower body water percentage than the control group, indicating a greater accumulation of body fat. The group receiving the probiotics with tetracycline presented similar results to the control group, indicating a possible protective effect of body fat accumulation in the group receiving tetracycline alone. The results show that tetracycline increased the concentration of body fat, and the use of probiotics was associated with an ability to protect the animals from the pro-obesity effect.


Assuntos
Animais , Masculino , Ratos , Ratos/classificação , Tetraciclinas/análise , Lactobacillus gasseri/metabolismo , Microbioma Gastrointestinal/genética , Anti-Infecciosos/administração & dosagem , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA