Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chinese Critical Care Medicine ; (12): 991-994, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1010897

RESUMO

The need for mechanical ventilation due to severe hypoxemia and acute respiratory distress syndrome has increased dramatically in the global pandemic of severe respiratory infectious diseases. In clinical scenarios, it is sometimes necessary to briefly disconnect the ventilator pipeline from the artificial airway. Still, this operation can lead to a sharp drop in airway pressure, which is contrary to the protective lung ventilation strategy and increases the risk of environmental exposure to bioaerosol, posing a serious threat to patients and medical workers. At present, there is yet to be a practical solution. A new artificial airway device was designed by the medical staff from the department of critical care medicine of Beijing Tiantan Hospital, Capital Medical University, based on many years of research experience in respiratory support therapy, and recently obtained the National Utility Model Patent of China (ZL 2019 2 0379605.4). The device comprises two connecting pipes, the sealing device body, and the globe valve represented by the iridescent optical ring. It has a simple structure, convenient operation, and low production cost. The device is installed between the artificial airway and the ventilator pipeline and realizes the instantaneous sealing of the artificial airway by adjusting the shut-off valve. Using this device to treat mechanically ventilated patients can minimize the ventilator-induced lung injury caused by the repeated disconnection of pipelines, avoid iatrogenic transmission of bioaerosols, and realize dual protection for patients and medical workers. It has extensive clinical application prospects and high health and economic value.


Assuntos
Humanos , Respiração Artificial/efeitos adversos , Ventiladores Mecânicos/efeitos adversos , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Hipóxia/complicações
2.
Rev. bras. ter. intensiva ; 32(3): 444-457, jul.-set. 2020. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1138512

RESUMO

RESUMO A pandemia por COVID-19 tem deixado os gestores, os profissionais de saúde e a população preocupados com a potencial escassez de ventiladores pulmonares para suporte de pacientes graves. No Brasil, há diversas iniciativas com o intuito de produzir ventiladores alternativos para ajudar a suprir essa demanda. Para auxiliar as equipes que atuam nessas iniciativas, são expostos alguns conceitos básicos sobre fisiologia e mecânica respiratória, os termos comumente utilizados no contexto da ventilação mecânica, as fases do ciclo ventilatório, as diferenças entre disparo e ciclagem, os modos ventilatórios básicos e outros aspectos relevantes, como mecanismos de lesão pulmonar induzida pela ventilação mecânica, pacientes com drive respiratório, necessidade de umidificação de vias aéreas, risco de contaminação cruzada e disseminação de aerossóis. Após a fase de desenvolvimento de protótipo, são necessários testes pré-clínicos de bancada e em modelos animais, a fim de determinar a segurança e o desempenho dos equipamentos, seguindo requisitos técnicos mínimos exigidos. Então, é imprescindível passar pelo processo regulatório exigido pela Agência Nacional de Vigilância Sanitária (ANVISA). A empresa responsável pela fabricação do equipamento deve estar regularizada junto à ANVISA, que também deve ser notificada da condução dos testes clínicos em humanos, seguindo protocolo de pesquisa aprovado pelo Comitê de Ética em Pesquisa. O registro do ventilador junto à ANVISA deve ser acompanhado de um dossiê, composto por documentos e informações detalhadas neste artigo, que não tem o propósito de esgotar o assunto, mas de nortear os procedimentos necessários.


ABSTRACT The COVID-19 pandemic has brought concerns to managers, healthcare professionals, and the general population related to the potential mechanical ventilators' shortage for severely ill patients. In Brazil, there are several initiatives aimed at producing alternative ventilators to cover this gap. To assist the teams that work in these initiatives, we provide a discussion of some basic concepts on physiology and respiratory mechanics, commonly used mechanical ventilation terms, the differences between triggering and cycling, the basic ventilation modes and other relevant aspects, such as mechanisms of ventilator-induced lung injury, respiratory drive, airway heating and humidification, cross-contamination risks, and aerosol dissemination. After the prototype development phase, preclinical bench-tests and animal model trials are needed to determine the safety and performance of the ventilator, following the minimum technical requirements. Next, it is mandatory going through the regulatory procedures as required by the Brazilian Health Regulatory Agency (Agência Nacional de Vigilância Sanitária - ANVISA). The manufacturing company should be appropriately registered by ANVISA, which also must be notified about the conduction of clinical trials, following the research protocol approval by the Research Ethics Committee. The registration requisition of the ventilator with ANVISA should include a dossier containing the information described in this paper, which is not intended to cover all related matters but to provide guidance on the required procedures.


Assuntos
Humanos , Animais , Pneumonia Viral/terapia , Respiração Artificial/instrumentação , Ventiladores Mecânicos , Infecções por Coronavirus/terapia , Pneumonia Viral/epidemiologia , Brasil/epidemiologia , Mecânica Respiratória , Infecções por Coronavirus/epidemiologia , Desenho de Equipamento , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Pandemias , COVID-19
3.
Rev. bras. ter. intensiva ; 32(1): 58-65, jan.-mar. 2020. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1138472

RESUMO

RESUMO Objetivo: Determinar se a administração de adalimumabe previamente à ventilação mecânica reduz a lesão pulmonar induzida por ventilação mecânica. Métodos: Randomizaram-se 18 ratos em três grupos submetidos à ventilação mecânica por 3 horas com uma fração inspirada de oxigênio de 0,40%. Os três grupos foram assim caracterizados: um grupo com baixo volume corrente (n = 6), no qual se utilizaram volume corrente de 8mL/kg e pressão expiratória final positiva de 5cmH2O; um grupo com alto volume corrente (n = 6), no qual se utilizaram volume corrente de 35mL/kg e pressão expiratória final positiva de zero; e um grupo pré-tratado com alto volume corrente (n = 6), no qual se administraram adalimumabe (100µg/kg) por via intraperitoneal 24 horas antes do início da ventilação mecânica, volume corrente de 35mL/kg e pressão expiratória final positiva de zero. Realizou-se ANOVA para comparação de dano histológico (com utilização de escores segundo o ATS 2010 Lung Injury Scoring System), edema pulmonar, complacência pulmonar, pressão parcial de oxigênio arterial e pressão arterial média entre os grupos. Resultados: Após 3 horas de ventilação, o escore médio de lesão histológica pulmonar foi mais elevado no grupo com alto volume corrente do que no grupo com baixo volume corrente (0,030 versus 0,0051; p = 0,003). O grupo com alto volume corrente demonstrou complacência pulmonar diminuída após 3 horas (p = 0,04) e hipoxemia (p = 0,018 versus controle). O grupo alto volume corrente tratado previamente teve melhora do escore histológico, principalmente devido à redução significante da infiltração leucocitária (p = 0,003). Conclusão: O exame histológico após 3 horas de ventilação lesiva revelou lesão pulmonar induzida por ventilação mecânica na ausência de modificações mensuráveis na mecânica pulmonar e na oxigenação; a administração de adalimumabe antes da ventilação mecânica diminuiu o edema pulmonar e o dano histológico.


ABSTRACT Objective: To determine whether adalimumab administration before mechanical ventilation reduces ventilator-induced lung injury (VILI). Methods: Eighteen rats randomized into 3 groups underwent mechanical ventilation for 3 hours with a fraction of inspired oxygen = 0.40% including a low tidal volume group (n = 6), where tidal volume = 8mL/kg and positive end-expiratory pressure = 5cmH2O; a high tidal volume group (n = 6), where tidal volume = 35mL/kg and positive end-expiratory pressure = 0; and a pretreated + high tidal volume group (n = 6) where adalimumab (100ug/kg) was administered intraperitoneally 24 hours before mechanical ventilation + tidal volume = 35mL/kg and positive end-expiratory pressure = 0. ANOVA was used to compare histological damage (ATS 2010 Lung Injury Scoring System), pulmonary edema, lung compliance, arterial partial pressure of oxygen, and mean arterial pressure among the groups. Results: After 3 hours of ventilation, the mean histological lung injury score was higher in the high tidal volume group than in the low tidal volume group (0.030 versus 0.0051, respectively, p = 0.003). The high tidal volume group showed diminished lung compliance at 3 hours (p = 0.04) and hypoxemia (p = 0,018 versus control). Pretreated HVt group had an improved histological score, mainly due to a significant reduction in leukocyte infiltration (p = 0.003). Conclusion: Histological examination after 3 hours of injurious ventilation revealed ventilator-induced lung injury in the absence of measurable changes in lung mechanics or oxygenation; administering adalimumab before mechanical ventilation reduced lung edema and histological damage.


Assuntos
Humanos , Animais , Ratos , Adulto Jovem , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Adalimumab/uso terapêutico , Distribuição Aleatória , Ratos Wistar , Modelos Animais de Doenças
4.
Rev. chil. anest ; 49(4): 504-513, 2020. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1511705

RESUMO

SARS-CoV-2 is the agent responsible for COVID-19, the current pandemic, which is characterized by developing respiratory disturbances that are associated with severe hypoxemia associated with symptoms of non-bacterial pneumonia, ARDS up to multi-organ failure. It has been characterized by presenting 2 different phenotypes (phenotype L and phenotype H), with phenotype H being a stage of progressive deterioration of phenotype L, which depends on the earliness with which ventilatory management begins and the degree of inflammatory compromise. However, since VMI can generate VILI, the use of protective ventilation has been recommended as a ventilatory strategy for COVID-19. This review aims to comment on the available evidence of the essential aspects of protective IMV in the context of ARDS associated with COVID-19, in addition to the use of neuromuscular blockade and prone strategies.


El SARS-CoV-2 es el agente responsable del COVID-19, actual pandemia, que se caracteriza por desarrollar alteraciones respiratorias que cursan con hipoxemia severa asociada a cuadros de neumonía no bacteriana, SDRA hasta la falla multiorgánica. Se ha caracterizado por presentar 2 fenotipos distintos (fenotipo L y fenotipo H), siendo el fenotipo H un estadío de deterioro progresivo del fenotipo L, que depende de la precocidad con la que se inicia el manejo ventilatorio y del grado de compromiso inflamatorio. Sin embargo, dado que la VMI puede generar VILI, se ha recomendado el uso de una ventilación protectora como estrategia ventilatoria para COVID-19. La presente revisión tiene como objetivo comentar la evidencia disponible de los aspectos esenciales de la VMI protectora en el contexto del SDRA asociado a COVID-19, además del uso de bloqueo neuromuscular y las estrategias de prono.


Assuntos
Humanos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , COVID-19/terapia , Decúbito Ventral , Bloqueio Neuromuscular , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , SARS-CoV-2
5.
Acta cir. bras ; 34(9): e201900902, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1054698

RESUMO

Abstract Purpose: To investigate the role of vagus nerve activation in the protective effects of hypercapnia in ventilator-induced lung injury (VILI) rats. Methods: Male Sprague-Dawley rats were randomized to either high-tidal volume or low-tidal volume ventilation (control) and monitored for 4h. The high-tidal volume group was further divided into either a vagotomy or sham-operated group and each surgery group was further divided into two subgroups: normocapnia and hypercapnia. Injuries were assessed hourly through hemodynamics, respiratory mechanics and gas exchange. Protein concentration, cell count and cytokines (TNF-α and IL-8) in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight and pathological changes were examined. Vagus nerve activity was recorded for 1h. Results: Compared to the control group, injurious ventilation resulted in a decrease in PaO2/FiO2 and greater lung static compliance, MPO activity, enhanced BALF cytokines, protein concentration, cell count, and histology injury score. Conversely, hypercapnia significantly improved VILI by decreasing the above injury parameters. However, vagotomy abolished the protective effect of hypercapnia on VILI. In addition, hypercapnia enhanced efferent vagus nerve activity compared to normocapnia. Conclusion: These results indicate that the vagus nerve plays an important role in mediating the anti-inflammatory effect of hypercapnia on VILI.


Assuntos
Animais , Masculino , Ratos , Nervo Vago/cirurgia , Líquido da Lavagem Broncoalveolar/química , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Hipercapnia , Vagotomia , Distribuição Aleatória , Citocinas/análise , Interleucina-8/análise , Fator de Necrose Tumoral alfa/análise , Ratos Sprague-Dawley , Modelos Animais de Doenças
6.
Rev. bras. ter. intensiva ; 29(2): 231-237, abr.-jun. 2017. tab, graf
Artigo em Português | LILACS | ID: biblio-899501

RESUMO

RESUMO A distensão excessiva e o recrutamento alveolar pelo volume corrente foram defendidos como os principais mecanismos físicos responsáveis pela lesão pulmonar induzida pelo ventilador. A limitação do volume corrente demonstrou benefícios quanto à sobrevivência em pacientes com síndrome da angústia respiratória aguda e é reconhecida como a pedra fundamental da ventilação protetora. Em contraste, o uso de elevados níveis de pressão positiva expiratória final em estudos clínicos gerou resultados conflitantes e ainda é um assunto controvertido. Nesta revisão, discutimos os benefícios e as limitações da abordagem de pulmão aberto, e debatemos alguns recentes estudos experimentais e clínicos, referentes ao uso de níveis baixos e moderados de pressão positiva expiratória final. Também distinguimos o estiramento dinâmico (volume corrente) do estático (pressão expiratória final positiva e pressão média nas vias aéreas) e discutimos seus papéis na indução da lesão pulmonar induzida pela ventilação. As estratégias com elevada pressão positiva expiratória final claramente diminuem a hipoxemia refratária em pacientes com síndrome da angústia respiratória aguda, porém também aumentam o estiramento estático, que, por sua vez, pode ser lesiva aos pacientes, especialmente para aqueles com nível mais baixo de recrutabilidade pulmonar. Em pacientes com insuficiência respiratória grave, recomenda-se a titulação da pressão positiva expiratória final contra a gravidade da hipoxemia, ou sua aplicação de uma forma decrescente após manobra de recrutamento. Caso sejam observadas elevadas pressões de platô, driving pressure ou pressão média nas vias aéreas, a posição prona ou ventilação ultraprotetora podem ser indicadas para melhora da oxigenação, sem estresse adicional e estiramento dos pulmões.


ABSTRACT Overdistention and intratidal alveolar recruitment have been advocated as the main physical mechanisms responsible for ventilator-induced lung injury. Limiting tidal volume has a demonstrated survival benefit in patients with acute respiratory distress syndrome and is recognized as the cornerstone of protective ventilation. In contrast, the use of high positive end-expiratory pressure levels in clinical trials has yielded conflicting results and remains controversial. In the present review, we will discuss the benefits and limitations of the open lung approach and will discuss some recent experimental and clinical trials on the use of high versus low/moderate positive end-expiratory pressure levels. We will also distinguish dynamic (tidal volume) from static strain (positive end-expiratory pressure and mean airway pressure) and will discuss their roles in inducing ventilator-induced lung injury. High positive end-expiratory pressure strategies clearly decrease refractory hypoxemia in patients with acute respiratory distress syndrome, but they also increase static strain, which in turn may harm patients, especially those with lower levels of lung recruitability. In patients with severe respiratory failure, titrating positive end-expiratory pressure against the severity of hypoxemia, or providing it in a decremental fashion after a recruitment maneuver, is recommended. If high plateau, driving or mean airway pressures are observed, prone positioning or ultraprotective ventilation may be indicated to improve oxygenation without additional stress and strain in the lung.


Assuntos
Humanos , Respiração Artificial/métodos , Respiração com Pressão Positiva , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia , Volume de Ventilação Pulmonar , Decúbito Ventral , Hipóxia/terapia
9.
J. bras. pneumol ; 42(3): 166-173, tab, graf
Artigo em Inglês | LILACS | ID: lil-787498

RESUMO

ABSTRACT Objective: To evaluate the effects that administering dexamethasone before the induction of ventilator-induced lung injury (VILI) has on the temporal evolution of that injury. Methods: Wistar rats were allocated to one of three groups: pre-VILI administration of dexamethasone (dexamethasone group); pre-VILI administration of saline (control group); or ventilation only (sham group). The VILI was induced by ventilation at a high tidal volume. Animals in the dexamethasone and control groups were euthanized at 0, 4, 24, and 168 h after VILI induction. We analyzed arterial blood gases, lung edema, cell counts (total and differential) in the BAL fluid, and lung histology. Results: At 0, 4, and 24 h after VILI induction, acute lung injury (ALI) scores were higher in the control group than in the sham group (p < 0.05). Administration of dexamethasone prior to VILI induction decreased the severity of the lung injury. At 4 h and 24 h after induction, the ALI score in the dexamethasone group was not significantly different from that observed for the sham group and was lower than that observed for the control group (p < 0.05). Neutrophil counts in BAL fluid were increased in the control and dexamethasone groups, peaking at 4 h after VILI induction (p < 0.05). However, the neutrophil counts were lower in the dexamethasone group than in the control group at 4 h and 24 h after induction (p < 0.05). Pre-treatment with dexamethasone also prevented the post-induction oxygenation impairment seen in the control group. Conclusions: Administration of dexamethasone prior to VILI induction attenuates the effects of the injury in Wistar rats. The molecular mechanisms of such injury and the possible clinical role of corticosteroids in VILI have yet to be elucidated.


RESUMO Objetivo: Avaliar os efeitos da administração de dexametasona antes da indução de lesão pulmonar induzida por ventilação mecânica (LPIVM) na evolução temporal dessa lesão. Métodos: Ratos Wistar foram alocados em um dos três grupos: administração de dexametasona pré-LPIVM (grupo dexametasona); administração de salina pré-LPIVM (grupo controle); e somente ventilação (grupo sham). A LPIVM foi realizada por ventilação com volume corrente alto. Os animais dos grupos dexametasona e controle foram sacrificados em 0, 4, 24 e 168 h após LPIVM. Analisamos gasometria arterial, edema pulmonar, contagens de células (totais e diferenciais) no lavado broncoalveolar e histologia de tecido pulmonar. Resultados: Em 0, 4 e 24 h após LPIVM, os escores de lesão pulmonar aguda (LPA) foram maiores no grupo controle que no grupo sham (p < 0,05). A administração de dexametasona antes da LPIVM reduziu a gravidade da lesão pulmonar. Em 4 e 24 h após a indução, o escore de LPA no grupo dexametasona não foi significativamente diferente daquele observado no grupo sham e foi menor que o observado no grupo controle (p < 0,05). As contagens de neutrófilos no lavado broncoalveolar estavam aumentadas nos grupos controle e dexametasona, com pico em 4 h após LPIVM (p < 0,05). Entretanto, as contagens de neutrófilos foram menores no grupo dexametasona que no grupo controle em 4 e 24 h após LPIVM (p < 0,05). O pré-tratamento com dexametasona também impediu o comprometimento da oxigenação após a indução visto no grupo controle. Conclusões: A administração de dexametasona antes de LPIVM atenua os efeitos da lesão em ratos Wistar. Os mecanismos moleculares dessa lesão e o possível papel clínico dos corticosteroides na LPIVM ainda precisam ser elucidados.


Assuntos
Animais , Masculino , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Gasometria , Contagem de Leucócitos , Pulmão/patologia , Modelos Animais , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Tempo , Resultado do Tratamento
10.
Rev. bras. ter. intensiva ; 25(4): 319-326, Oct-Dec/2013.
Artigo em Português | LILACS | ID: lil-701408

RESUMO

A necessidade de intubação e do uso de ventilação mecânica na prematuridade está relacionada à chamada lesão pulmonar induzida pela ventilação e à consequente displasia broncopulmonar. Busca-se a melhor compreensão dos mecanismos de lesão envolvendo resposta inflamatória mediada pelas citocinas para o desenvolvimento de novas estratégias protetoras. Pesquisou-se na base de dados PubMed, incluindo artigos relevantes, os unitermos "ventilator induced lung injury preterm", "continuous positive airway pressure", "preterm" e "bronchopulmonary dysplasia". Dados e informações significativas foram compilados em tópicos, com o objetivo de formar uma visão crítica e plena acerca da lesão induzida pela ventilação e de suas consequências ao prematuro. Foi revisado o papel das citocinas pró-inflamatórias como mediadores da lesão, especialmente interleucinas 6 e 8, e fator de necrose tumoral alfa. Foram apresentadas evidências em estudos com animais e também em humanos, mostrando que breves períodos de ventilação mecânica são suficientes para a liberação dessas interleucinas inflamatórias. Também foram revisadas outras formas de ventilação mecânica e de ventilação não invasiva, como alternativas protetoras aos modos convencionais. Concluiu-se que o uso de ventilação não invasiva, a intubação com administração precoce de surfactante e a extubação rápida para CPAP nasal, além de estratégias que regulam o volume corrente evitando o volutrauma (como a ventilação com volume garantido), são medidas protetoras da lesão pulmonar induzida pela ventilação mecânica no prematuro.


In preterm infants, the need for intubation and mechanical ventilation is associated with ventilator-induced lung injuries and subsequent bronchopulmonary dysplasia. The aim of the present review was to improve the understanding of the mechanisms of injury that involve cytokine-mediated inflammation to contribute to the development of new preventive strategies. Relevant articles were retrieved from the PubMed database using the search terms "ventilator-induced lung injury preterm", "continuous positive airway pressure", "preterm", and "bronchopulmonary dysplasia". The resulting data and other relevant information were divided into several topics to ensure a thorough, critical view of ventilation-induced lung injury and its consequences in preterm infants. The role of pro-inflammatory cytokines (particularly interleukins 6 and 8 and tumor necrosis factor alpha) as mediators of lung injury was assessed. Evidence from studies conducted with animals and human newborns is described. This evidence shows that brief periods of mechanical ventilation is sufficient to induce the release of pro-inflammatory cytokines. Other forms of mechanical and non-invasive ventilation were also analyzed as protective alternatives to conventional mechanical ventilation. It was concluded that non-invasive ventilation, intubation followed by early surfactant administration and quick extubation for nasal continuous positive airway pressure, and strategies that regulate tidal volume and avoid volutrauma (such as volume guarantee ventilation) protect against ventilator-induced lung injury in preterm infants.


Assuntos
Animais , Humanos , Recém-Nascido , Displasia Broncopulmonar/etiologia , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Displasia Broncopulmonar/fisiopatologia , Displasia Broncopulmonar/prevenção & controle , Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Pressão Positiva Contínua nas Vias Aéreas/métodos , Citocinas/metabolismo , Recém-Nascido Prematuro , Inflamação/etiologia , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Surfactantes Pulmonares/administração & dosagem , Fatores de Tempo , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/epidemiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA