Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chinese Medical Sciences Journal ; (4): 349-352, 2022.
Artigo em Inglês | WPRIM | ID: wpr-970700

RESUMO

Autosomal recessive congenital ichthyosis (ARCI) is characterized by being born as collodion babies, hyperkeratosis, and skin scaling. We described a collodion baby at birth with mild ectropion, eclabium, and syndactyly. Whole exome sequencing showed a compound heterozygous variant c.[56C>A], p.(Ser19X) and c.[100G>A], p.(Ala34Thr) in the PNPLA1 gene [NM_001145717; exon 1]. The protein encoded by PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. The variant was located in the patatin core domain of PNPLA1 and resulted in a truncated protein which could disrupt the function of the protein. This case report highlights a novel compound heterozygous mutation in PNPLA1 identified in a Chinese child.


Assuntos
Humanos , Recém-Nascido , Aciltransferases/genética , Ceramidas/metabolismo , Colódio , Ictiose Lamelar/genética , Lipase/metabolismo , Mutação , Fosfolipases/genética
2.
Chinese Journal of Biotechnology ; (12): 88-99, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878545

RESUMO

The formation of most proteins consists of two steps: the synthesis of precursor proteins and the synthesis of functional proteins. In these processes, propeptides play important roles in assisting protein folding or inhibiting its activity. As an important polypeptide chain coded by a gene sequence in lipase gene, propeptide usually functions as an intramolecular chaperone, assisting enzyme molecule folding. Meanwhile, some specific sites on propeptide such as glycosylated sites, have important effect on the activity, stability in extreme environment, methanol resistance and the substrate specificity of the lipase. Studying the mechanism of propeptide-mediated protein folding, as well as the influence of propeptide on lipases, will allow to regulate lipase by alternating the propeptide folding behavior and in turn pave new ways for protein engineering research.


Assuntos
Lipase/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Precursores de Proteínas , Especificidade por Substrato
3.
Electron. j. biotechnol ; 47: 10-16, sept. 2020. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1224608

RESUMO

BACKGROUND: Liquid wax esters are widely used in cosmetic as well as pharmaceutical and other industries. The demand of organic and natural products is increasing nowadays. Coconut oil contains benefit fatty acids and has been mainly used for oil-based and moisturizer products. Liquid wax esters from coconut oil and unsaturated fatty alcohol can be synthesized by enzymatic reaction; and it is interesting for using as an alternative natural ingredient in these industries. RESULTS: Optimal condition for coconut oil based wax ester synthesis by immobilized lipase EQ3 was 10 U of enzyme, temperature at 30°C and molar ratio of coconut oil to oleyl alcohol at 1:3 (mol/mol) (0.33X) dissolved in isooctane for 12 h, while for Lipozyme RM IM optimal condition was 10 U of enzyme, temperature at 45°C and oil/alcohol molar ratio at 1:3 (0.33X) dissolved in isooctane for 3 h. Percentage of wax esters synthesized by both lipases reached more than 88%. Both immobilized lipases catalyzed high yield of wax esters within the 2nd batch; after that, the immobilized lipases showed reduced activity and synthesized b60% of wax esters from the 3rd to 5th batch. The main composition of wax esters was ~48% oleyl laurate with 10% degradation at ~250°C. CONCLUSIONS: The liquid wax ester synthesis by commercial Lipozyme RM IM had higher effect than immobilized lipase EQ3, but both catalysts were stable within 2 batches in the optimum condition. The characteristic properties of wax esters showed potential for use as components in cosmetics and skin care products.


Assuntos
Ceras , Ésteres/metabolismo , Óleo de Palmeira/síntese química , Lipase/metabolismo , Temperatura , Enzimas Imobilizadas , Indústria Cosmética
4.
Electron. j. biotechnol ; 39: 91-97, may. 2019. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1052260

RESUMO

BACKGROUND: Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. RESULTS: The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and ß-strand propensity. Conclusions: This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification.


Assuntos
Penicillium/enzimologia , Estabilidade Enzimática , Indústria de Detergentes , Lipase/metabolismo , Penicillium/isolamento & purificação , Penicillium/genética , Reação em Cadeia da Polimerase/métodos , Temperatura Baixa , Álcalis , Biocatálise , Interações Hidrofóbicas e Hidrofílicas , Concentração de Íons de Hidrogênio , Lipase/isolamento & purificação , Lipase/genética , Mutação
6.
Electron. j. biotechnol ; 30: 33-38, nov. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021336

RESUMO

Background: Lipases are used in detergent industries to minimise the use of phosphate-based chemicals in detergent formulations. The use of lipase in household laundry reduces environmental pollution and enhances the ability of detergent to remove tough oil or grease stains. Results: A lipase-producing indigenous Bacillus subtilis strain [accession no. KT985358] was isolated from the foothills of Trikuta mountain in Jammu and Kashmir, India. The lipase (BSK-L) produced by this strain expressed alkali and thermotolerance. Lipase has an optimal activity at pH 8.0 and temperature 37°C, whereas it is stable at pH 6.0­9.0 and showed active lipolytic activity at temperatures 30 to 60°C. Furthermore, lipase activity was found to be stimulated in the presence of the metal ions Mn2+, K+, Zn2+, Fe2+ and Ca2+. This lipase was resistant to surfactants, oxidising agents and commercial detergents, suggesting it as a potential candidate for detergent formulation. BSK-L displayed noticeable capability to remove oil stains when used in different washing solutions containing buffer, lipase and commercial detergent. The maximum olive oil removal percentage obtained was 68% when the optimum detergent concentration (Fena) was 0.3%. The oil removal percentage from olive oil-soiled cotton fabric increased with 40 U/mL of lipase. Conclusions: This BSK-L enzyme has the potential for removing oil stains by developing a pre-soaked solution for detergent formulation and was compatible with surfactants, oxidising agents and commercial detergents.


Assuntos
Bacillus subtilis/metabolismo , Lipase/metabolismo , Temperatura , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/enzimologia , Detergentes , Alcalinização , Termotolerância , Concentração de Íons de Hidrogênio , Lipase/biossíntese
7.
Electron. j. biotechnol ; 28: 87-94, July. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1015957

RESUMO

Background: Inferior Tieguanyin oolong tea leaves were treated with tannase. The content and bioactivity of catechins in extracts from the treated tea leaves were investigated to assess the improvement in the quality of inferior Tieguanyin oolong tea. Results: Analysis showed that after treatment, the esterified catechin content decreased by 23.5%, whereas non-galloylated catechin and gallic acid contents increased by 15.3% and 182%, respectively. The extracts from tannase-treated tea leaves showed reduced ability to bind to BSA and decreased tea cream levels. The extracts also exhibited increased antioxidant ability to scavenge OH and DPPH radicals, increased ferric reducing power, and decreased inhibitory effects on pancreatic α-amylase and lipase activities. Conclusions: These results suggested that tannase treatment could improve the quality of inferior Tieguanyin oolong tea leaves.


Assuntos
Chá/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Chá/metabolismo , Chá/química , Temperatura , Catálise , Catequina/análise , Folhas de Planta/enzimologia , Fermentação , Hidrólise , Lipase/antagonistas & inibidores , Lipase/metabolismo , Antioxidantes
8.
Braz. j. microbiol ; 47(1): 143-149, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-775118

RESUMO

Abstract Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.


Assuntos
Aspergillus/enzimologia , Lipase/metabolismo , Cátions Bivalentes/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/isolamento & purificação , Peso Molecular , Mercaptoetanol/metabolismo , Metais/metabolismo , Temperatura
9.
Braz. j. microbiol ; 46(4): 1065-1076, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769637

RESUMO

Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL) in the case of tyributyrin. For comparison, an index was established by dividing the lipase activities to cell biomass (U/mg). The maximum thermostable lipase production was achieved by the isolates F84a, F84b, and G. thermodenitrificans DSM 465T (0.009, 0.008 and 0.008 U/mg) within olive oil broth, whereas G. stearothermophilus A113 displayed the highest lipase activity than its type strain in tyributyrin. Therefore, as some of these isolates displayed higher activities in comparison to references, new lipase producing bacilli were determined by presenting their genotypic diversity with DNA fingerprinting techniques.


Assuntos
Bacillus/química , Bacillus/classificação , Bacillus/enzimologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática/química , Estabilidade Enzimática/classificação , Estabilidade Enzimática/enzimologia , Estabilidade Enzimática/genética , Estabilidade Enzimática/crescimento & desenvolvimento , Estabilidade Enzimática/metabolismo , Variação Genética/química , Variação Genética/classificação , Variação Genética/enzimologia , Variação Genética/genética , Variação Genética/crescimento & desenvolvimento , Variação Genética/metabolismo , Genótipo/química , Genótipo/classificação , Genótipo/enzimologia , Genótipo/genética , Genótipo/crescimento & desenvolvimento , Genótipo/metabolismo , Temperatura Alta/química , Temperatura Alta/classificação , Temperatura Alta/enzimologia , Temperatura Alta/genética , Temperatura Alta/crescimento & desenvolvimento , Temperatura Alta/metabolismo , Concentração de Íons de Hidrogênio/química , Concentração de Íons de Hidrogênio/classificação , Concentração de Íons de Hidrogênio/enzimologia , Concentração de Íons de Hidrogênio/genética , Concentração de Íons de Hidrogênio/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio/metabolismo , Lipase/química , Lipase/classificação , Lipase/enzimologia , Lipase/genética , Lipase/crescimento & desenvolvimento , Lipase/metabolismo , Filogenia/química , Filogenia/classificação , Filogenia/enzimologia , Filogenia/genética , Filogenia/crescimento & desenvolvimento , Filogenia/metabolismo
10.
Arch. endocrinol. metab. (Online) ; 59(4): 335-342, Aug. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-757366

RESUMO

Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanisms involved, which reformulated the concept of lipolysis. Novel findings from these studies include the identification of lipolytic products as signaling molecules regulating important metabolic processes in many non-adipose tissues, unveiling a previously underestimated aspect of lipolysis. Thus, we present here an updated review of concepts and regulation of white adipocyte lipolysis with a special emphasis in its role in metabolism homeostasis and as a source of important signaling molecules.


Assuntos
Humanos , Tecido Adiposo Branco/enzimologia , Lipase/metabolismo , Lipólise/fisiologia , Tecido Adiposo Branco/fisiologia , Lipase/fisiologia
11.
Braz. j. microbiol ; 46(1): 207-217, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748260

RESUMO

The practice of refrigerating raw milk at the farm has provided a selective advantage for psychrotrophic bacteria that produce heat-stable proteases and lipases causing severe quality problems to the dairy industry. In this work, a protease (AprX) and a lipase (LipM) produced by Pseudomonas fluorescens 041, a highly proteolytic and lipolytic strain isolated from raw milk obtained from a Brazilian farm, have been purified and characterized. Both enzymes were purified as recombinant proteins from Escherichia coli. The AprX metalloprotease exhibited activity in a broad temperature range, including refrigeration, with a maximum activity at 37 °C. It was active in a pH range of 4.0 to 9.0. This protease had maximum activity with the substrates casein and gelatin in the presence of Ca+2. The LipM lipase had a maximum activity at 25 °C and a broad pH optimum ranging from 7.0 to 10. It exhibited the highest activity, in the presence of Ca+2, on substrates with long-chain fatty acid residues. These results confirm the spoilage potential of strain 041 in milk due to, at least in part, these two enzymes. The work highlights the importance of studies of this kind with strains isolated in Brazil, which has a recent history on the implementation of the cold chain at the dairy farm.


Assuntos
Animais , Lipase/metabolismo , Leite/microbiologia , Peptídeo Hidrolases/metabolismo , Pseudomonas fluorescens/isolamento & purificação , Brasil , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Pseudomonas fluorescens/genética , Refrigeração , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
12.
Braz. j. microbiol ; 45(4): 1503-1511, Oct.-Dec. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-741306

RESUMO

Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL-1) in the presence of 5 mmol L-1 NaCl at 30 ºC and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL-1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.


Assuntos
Candida/enzimologia , Candida/metabolismo , Lipase/isolamento & purificação , Lipase/metabolismo , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Meios de Cultura/química , Esterificação , Endófitos/enzimologia , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Endófitos/metabolismo , Concentração de Íons de Hidrogênio , Ácido Oleico/metabolismo , Folhas de Planta/microbiologia , Ricinus/microbiologia , Cloreto de Sódio/metabolismo , Temperatura
13.
Braz. j. microbiol ; 45(3): 903-910, July-Sept. 2014. ilus, graf
Artigo em Inglês | LILACS | ID: lil-727019

RESUMO

A soil screened Bacillus flexus XJU-1 was induced to simultaneously produce alkaline amylase, alkaline lipase and alkaline protease at their optimum levels on a common medium under submerged fermentation. The basal cultivation medium consisted of 0.5% casein, 0.5% starch and 0.5% cottonseedoil as an inducer forprotease, amylase, and lipase, respectively. The casein also served as nitrogen source for all 3 enzymes. The starch was also found to act as carbon source additive for both lipase and protease. Maximum enzyme production occurred on fermentation medium with 1.5% casein, 1.5% soluble starch, 2% cottonseed oil, 2% inoculum size, initial pH of 11.0, incubation temperature of 37 °C and 1% soybean meal as a nitrogen source supplement. The analysis of time course study showed that 24 h was optimum incubation time for amylase whereas 48 h was the best time for both lipase and protease. After optimization, a 3.36-, 18.64-, and 27.33-fold increase in protease, amylase and lipase, respectively was recorded. The lipase was produced in higher amounts (37.72 U/mL) than amylase and protease about 1.27 and 5.85 times, respectively. As the 3 enzymes are used in detergent formulations, the bacterium can be commercially exploited to secrete the alkaline enzymes for use in detergent industry. This is the first report for concomitant production of 3 alkaline enzymes by a bacterium.


Assuntos
Amilases/metabolismo , Bacillus/enzimologia , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Detergentes/metabolismo , Endopeptidases/metabolismo , Inibidores Enzimáticos/metabolismo , Lipase/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Temperatura , Fatores de Tempo
14.
Braz. j. microbiol ; 45(2): 389-393, Apr.-June 2014. ilus
Artigo em Inglês | LILACS | ID: lil-723093

RESUMO

Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Lipase/genética , Lipase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Lipase/química , Dados de Sequência Molecular , Peso Molecular , Filogenia , Multimerização Proteica , Proteólise , Peptídeo Hidrolases/metabolismo , Homologia de Sequência
15.
Braz. j. microbiol ; 45(2): 677-687, Apr.-June 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-723134

RESUMO

A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.


Assuntos
Enterobacter/enzimologia , Lipase/isolamento & purificação , Lipase/metabolismo , Sequência de Aminoácidos , Técnicas de Tipagem Bacteriana , Sequência de Bases , Cromatografia por Troca Iônica , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Enterobacter/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Irã (Geográfico) , Lipase/química , Lipase/genética , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo , Temperatura
16.
Braz. j. microbiol ; 45(1): 294-301, 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-709490

RESUMO

Lipases produced by a newly isolated Sporidiobolus pararoseus strain have potential catalytic ability for esterification reactions. After production, the enzymatic extracts (conventional crude and precipitated, 'CC' and 'CP', and industrial crude and precipitated, 'IC' e 'IP') were partially characterized. The enzymes presented, in general, higher specificity for short chain alcohols and fatty acids. The precipitated extract showed a good thermal stability, higher than that for crude enzymatic extracts. The 'CC' and 'CP' enzymes presented high activities after exposure to pH 6.5 and 40 ºC. On the other hand, the 'IC' and 'IP' extracts kept their activities in a wide range of pH memory but presented preference for higher reaction temperatures. Preliminary studies of application of the crude lipase extract in the enzymatic production of geranyl propionate using geraniol and propionic acid as substrates in solvent-free system led to a reaction conversion of 42 ± 1.5%.


Assuntos
Basidiomycota/enzimologia , Lipase/isolamento & purificação , Lipase/metabolismo , Álcoois/metabolismo , Basidiomycota/crescimento & desenvolvimento , Estabilidade Enzimática , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Lipase/química , Especificidade por Substrato , Temperatura
17.
Indian J Biochem Biophys ; 2013 Dec; 50(6): 570-756
Artigo em Inglês | IMSEAR | ID: sea-154217

RESUMO

Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50ºC and pH 7.0 using 5000 μmoles of lauric acid, 7000 μmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 × 10-7(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 × 107(M). The estimated constants agreed fairly well with literature data.


Assuntos
Soluções Tampão , Butanóis/química , Enzimas Imobilizadas/metabolismo , Esterificação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Ácidos Láuricos/química , Lipase/metabolismo , Solventes/química , Temperatura , Água/química
18.
Braz. j. microbiol ; 44(4): 1089-1095, Oct.-Dec. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-705254

RESUMO

The influence of various oil cakes has been investigated for high level production of lipase using Aspergillus tamarii MTCC 5152. By solid state fermentation in wheat bran containing 2.5% w/w gingili oil cake at 70% v/w moisture content the fungus produced a maximal yield of lipase (758 ± 3.61 u/g) after 5 days of incubation using 2% v/w inoculum containing 10(6) spores/mL. Wheat bran and gingili oil cake with supplementation of gingili oil (1.0% w/w), glucose (0.5% w/w) and peptone (0.5% w/w) gives an increased enzyme production of 793 ± 6.56 u/g. The enzyme shows maximum activity at pH 7.0, temperature 50 °C and was stable between the pH 5.0-8.0 and temperature up to 60 °C. Crude lipase (3%) applied to tannery fleshing shows 92% fat solubility. The results demonstrate that fat obtained from tannery fleshing, a by-product of the leather industry has a high potential for biodiesel production and the proteinaceous residue obtained can be used as animal feed.


Assuntos
Tecido Adiposo/metabolismo , Aspergillus/enzimologia , Lipase/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Temperatura
19.
Braz. j. microbiol ; 44(4): 1049-1057, Oct.-Dec. 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-705270

RESUMO

Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.


Assuntos
Ácido Clavulânico/metabolismo , Engenharia Metabólica , Mutagênese , Mutação , Streptomyces/metabolismo , Meios de Cultura/química , Lipase/metabolismo , Metanossulfonato de Metila , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/efeitos da radiação , Raios Ultravioleta
20.
Braz. j. microbiol ; 44(4): 1305-1314, Oct.-Dec. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-705271

RESUMO

An extracellular alkaline lipase from Pseudomonas aeruginosa mutant has been purified to homogeneity using acetone precipitation followed by anion exchange and gel filtration chromatography and resulted in 27-fold purification with 19.6% final recovery. SDS-PAGE study suggested that the purified lipase has an apparent molecular mass of 67 kDa. The optimum temperature and pH for the purified lipase were 45°C and 8.0, respectively. The enzyme showed considerable stability in pH range of 7.0-11.0 and temperature range 35-55 °C. The metal ions Ca2+, Mg2+ and Na+ tend to increase the enzyme activity, whereas, Fe2+ and Mn2+ ions resulted in discreet decrease in the activity. Divalent cations Ca+2 and Mg+2 seemed to protect the enzyme against thermal denaturation at high temperatures and in presence of Ca+2 (5 mM) the optimum temperature shifted from 45°C to 55°C. The purified lipase displayed significant stability in the presence of several hydrophilic and hydrophobic organic solvents (25%, v/v) up to 168 h. The pure enzyme preparation exhibited significant stability and compatibility with oxidizing agents and commercial detergents as it retained 40-70% of its original activities. The values of Km and Vmax for p-nitrophenyl palmitate (p-NPP) under optimal conditions were determined to be 2.0 mg.mL-1 and 5000 μg.mL-1.min-1, respectively.


Assuntos
Lipase/metabolismo , Pseudomonas aeruginosa/enzimologia , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Cátions/metabolismo , Ativadores de Enzimas , Estabilidade Enzimática , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lipase/química , Lipase/isolamento & purificação , Metais/metabolismo , Oxidantes/metabolismo , Pseudomonas aeruginosa/genética , Solventes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA