Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Braz. j. med. biol. res ; 48(6): 502-508, 06/2015. graf
Artigo em Inglês | LILACS | ID: lil-748225

RESUMO

Hormesis is an adaptive response to a variety of oxidative stresses that renders cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an important antioxidant that has protective effects against DNA damage caused by reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic effect remains unknown, as is the molecular mechanism that is involved. We found that a low concentration (10 μM) of CaA increased human liver L-02 cell viability, attenuated hydrogen peroxide (H2O2)-mediated decreases in cell viability, and decreased the extent of H2O2-induced DNA double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA treatment reduced ROS levels, which might have played a protective role. CaA also activated the extracellular signal-regulated kinase (ERK) signal pathway in a time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability and the protective effects against H2O2-mediated DNA damage. This study adds to the understanding of the antioxidant effects of CaA by identifying a novel molecular mechanism of enhanced cell viability and protection against DNA damage.


Assuntos
Humanos , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Análise de Variância , Western Blotting , Células Cultivadas , Linhagem Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fígado , Estresse Oxidativo/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo
2.
Experimental & Molecular Medicine ; : 146-152, 2011.
Artigo em Inglês | WPRIM | ID: wpr-171914

RESUMO

Our previous report has demonstrated that 5-formylhonokiol (FH), a derivative of honokiol (HK), exerts more potent anti-proliferative activities than honokiol in several tumor cell lines. In present study, we first explored the antiangiogenic activities of 5-formylhonokiol on proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) for the first time in vitro. Then we investigated the in vivo antiangiogenic effect of 5-formylhonokiol on zebrafish angiogenesis model. In order to clarify the underlying molecular mechanism of 5-formylhonokiol, we investigated the signaling pathway involved in controlling the angiogenesis process by western blotting assay. Wound-healing results showed that 5-formylhonokiol significantly and dose-dependently inhibited migration of cultured human umbilical vein enthothelial cells. The invasiveness of HUVEC cells was also effectively suppressed at a low concentration of 5-formylhonokiol in the transwell assay. Further F-actin imaging revealed that inhibitory effect of 5-formylhonokiol on invasion may partly contribute to the disruption of assembling stress fiber. Tube formation assay, which is associated with endothelial cells migration, further confirmed the anti-angiogenesis effect of 5-formylhonokiol. In in vivo zebrafish angiogenesis model, we found that 5-formylhonokiol dose-dependently inhibited angiogenesis. Furthermore, western blotting showed that 5-formylhonokiol significantly down-regulated extracellular signal-regulated kinase (ERK) expression and inhibited the phosphorylation of ERK but not affecting the total protein kinase B (Akt) expression and related phosphorylation, suggesting that 5-formylhonokiol might exert anti-angiogenesis capacity via down-regulation of the ERK signal pathway. Taken together, these data suggested that 5-formylhonokiol might be a viable drug candidate in antiangiogenesis and anticancer therapies.


Assuntos
Animais , Humanos , Actinas/metabolismo , Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas , Embrião não Mamífero/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Lignanas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Veias Umbilicais/citologia , Cicatrização , Peixe-Zebra/embriologia
3.
Yonsei Medical Journal ; : 420-428, 2011.
Artigo em Inglês | WPRIM | ID: wpr-95678

RESUMO

PURPOSE: Dexmedetomidine, a full agonist of alpha2B-adrenoceptors, is used for analgesia and sedation in the intensive care units. Dexmedetomidine produces an initial transient hypertension due to the activation of post-junctional alpha2B-adrenoceptors on vascular smooth muscle cells (SMCs). The aims of this in vitro study were to identify mitogen-activated protein kinase (MAPK) isoforms that are primarily involved in full, alpha2B-adrenoceptor agonist, dexmedetomidine-induced contraction of isolated rat aortic SMCs. MATERIALS AND METHODS: Rat thoracic aortic rings without endothelium were isolated and suspended for isometric tension recording. Cumulative dexmedetomidine (10(-9) to 10(-6) M) dose-response curves were generated in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD 98059, p38 MAPK inhibitor SB 203580, c-Jun NH2-terminal kinase (JNK) inhibitor SP 600125, L-type calcium channel blocker (verapamil and nifedipine), and alpha2-adrenoceptor inhibitor atipamezole. Dexmedetomidine-induced phosphorylation of ERK, JNK, and p38 MAPK in rat aortic SMCs was detected using Western blotting. RESULTS: SP 600125 (10(-6) to 10(-5) M) attenuated dexmedetomidine-evoked contraction in a concentration-dependent manner, whereas PD 98059 had no effect on dexmedetomidine-induced contraction. SB 203580 (10(-5) M) attenuated dexmedetomidine-induced contraction. Dexmedetomidine-evoked contractions were both abolished by atipamezole and attenuated by verapamil and nifedipine. Dexmedetomidine induced phosphorylation of JNK and p38 MAPK in rat aortic SMCs, but did not induce phosphorylation of ERK. CONCLUSION: Dexmedetomidine-induced contraction involves a JNK- and p38 MAPK-mediated pathway downstream of alpha2-adrenoceptor stimulation in rat aortic SMCs. In addition, dexmedetomidine-induced contractions are primarily dependent on calcium influx via L-type calcium channels.


Assuntos
Animais , Masculino , Ratos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antracenos/farmacologia , Aorta/citologia , Dexmedetomidina/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Contração Muscular , Músculo Liso Vascular/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Piridinas/farmacologia , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
4.
Experimental & Molecular Medicine ; : 38-46, 2010.
Artigo em Inglês | WPRIM | ID: wpr-104280

RESUMO

Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (> or = 200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.


Assuntos
Criança , Pré-Escolar , Humanos , Antracenos/farmacologia , Butadienos/farmacologia , Células Cultivadas , Colesterol/metabolismo , Ciclodextrinas/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Immunoblotting , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Metaloproteinase 2 da Matriz/metabolismo , Microscopia Eletrônica de Transmissão , Nitrilas/farmacologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo
5.
Journal of Veterinary Science ; : 23-28, 2009.
Artigo em Inglês | WPRIM | ID: wpr-151238

RESUMO

Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to have anti-tumor activity in various malignant neoplasms. However, the precise mechanism by which TET inhibits tumor cell growth remains to be elucidated. The present studies were performed to characterize the potential effects of TET on phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase (ERK) pathways since these signaling pathways are known to be responsible for cell growth and survival. TET suppressed cell proliferation and induced apoptosis in A549 human lung carcinoma cells. TET treatment resulted in a down-regulation of Akt and ERK phosphorylation in both time-/concentration-dependent manners. The inhibition of ERK using PD98059 synergistically enhanced the TET-induced apoptosis of A549 cells whereas the inhibition of Akt using LY294002 had a less significant effect. Taken together, our results suggest that TET: i) selectively inhibits the proliferation of lung cancer cells by blocking Akt activation and ii) increases apoptosis by inhibiting ERK. The treatment of lung cancers with TET may enhance the efficacy of chemotherapy and radiotherapy and increase the apoptotic potential of lung cancer cells.


Assuntos
Humanos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico
6.
Experimental & Molecular Medicine ; : 607-616, 2008.
Artigo em Inglês | WPRIM | ID: wpr-59827

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipids and involves in various cellular events, including tumor cell migration. In the present study, we investigated LPA receptor and its transactivation to EGFR for cyclooxygenase-2 (COX-2) expression and cell migration in CAOV-3 ovarian cancer cells. LPA induced COX-2 expression in a dose-dependent manner, and pretreatment of the cells with pharmacological inhibitors of Gi (pertussis toxin), Src (PP2), EGF receptor (EGFR) (AG1478), ERK (PD98059) significantly inhibited LPA- induced COX-2 expression. Consistent to these results, transfection of the cells with selective Src siRNA attenuated COX-2 expression by LPA. LPA stimulated CAOV-3 cell migration that was abrogated by pharmacological inhibitors and antibody of EP2. Higher expression of LPA2 mRNA was observed in CAOV-3 cells, and transfection of the cells with a selective LPA2 siRNA significantly inhibited LPA-induced activation of EGFR and ERK, as well as COX-2 expression. Importantly, LPA2 siRNA also blocked LPA-induced ovarian cancer cell migration. Collectively, our results clearly show the significance of LPA2 and Gi/Src pathway for LPA-induced COX-2 expression and cell migration that could be a promising drug target for ovarian cancer cell metastasis.


Assuntos
Feminino , Humanos , Butadienos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Lisofosfolipídeos/farmacologia , Nitrilas/farmacologia , Neoplasias Ovarianas/metabolismo , Toxina Pertussis/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Prostaglandina E/metabolismo , Transdução de Sinais , Ativação Transcricional , Tirfostinas/farmacologia
7.
Experimental & Molecular Medicine ; : 153-161, 2006.
Artigo em Inglês | WPRIM | ID: wpr-15696

RESUMO

Adhesion and migration of vascular smooth muscle cells (VSMCs) play an important role in the pathogenesis of atherosclerosis. These processes involve the interaction of VSMCs with extracellular matrix proteins. Here, we investigated integrin isoforms and signaling pathways mediating the adhesion and migration of VSMCs on betaig-h3, a transforming growth factor (TGF)-beta-inducible extracellular matrix protein that is elevated in atherosclerotic plaques. Adhesion assays showed that the alphavbeta5 integrin is a functional receptor for the adhesion of aortic VSMCs to betaig-h3. An YH18 motif containing amino acids between 563 and 580 of betaig-h3 was an essential motif for the adhesion and growth of VSMCs. Interaction between the YH18 motif and the alphavbeta5 integrin was responsible for the migration of VSMCs on betaig-h3. Inhibitors of phosphatidylinositide 3-kinase, extracellular signal-regulated kinase (ERK), and Src kinase reduced the adhesion and migration of VSMCs on betaig-h3. betaig-h3 triggered phosphorylation and activation of AKT, ERK, focal adhesion kinase, and paxillin mediating the adhesion and migration of VSMCs. Taken together, these results suggest that betaig-h3 and alphavbeta5 integrin play a role in the adhesion and migration of VSMCs during the pathogenesis of atherosclerosis.


Assuntos
Humanos , Animais , Quinases da Família src/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Transdução de Sinais/fisiologia , Receptores de Vitronectina/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Paxilina/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Músculo Liso Vascular/citologia , Morfolinas/farmacologia , Dados de Sequência Molecular , Integrinas/genética , Flavonoides/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Inibidores Enzimáticos/farmacologia , Cromonas/farmacologia , Células Cultivadas , Movimento Celular/fisiologia , Adesão Celular/fisiologia , Sequência de Aminoácidos , Motivos de Aminoácidos/genética , Fosfatidilinositol 3-Quinase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA