Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Respirar (Ciudad Autón. B. Aires) ; 15(3): [188-199], sept. 2023.
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1510766

RESUMO

Resumen Antecedentes: la ingeniería tisular permite obtener órganos como injertos a partir de tejidos descelularizados, regenerados con células autólogas. Objetivo: descelularizar y regenerar tráqueas porcinas. Material y métodos: se descelularizaron tráqueas porcinas colocándolas cada una en el epiplón de cuatro cerdos Yorkshire para su regeneración in vivo. Una tráquea desce-lularizada con tritón (DT), descelularizada con desoxicolato (DD), descelularizada con desoxicolato y reforzada con un polímero y células epiteliales (DDR), y una nativa crio-preservada (NC). Después de 8 días se obtuvieron la DD, NC y DDR; y al día 15, la DT. Se las evaluó mecánica e histológicamente, se realizó el análisis casuístico. Resultados: las tráqueas descelularizadas conservaron la integridad del cartílago, sin diferencias mecánicas, excepto la DDR con mayor rigidez. Las tráqueas regeneradas presentaron menor rigidez, excepto la DDR que además perdió el epitelio y la vascula-ridad. Las DT, DD mostraron epitelio no respiratorio, fibrosis y vasculogénesis con in-flamación. Conclusiones: las matrices conservaron sus características mecánicas. La regenera-ción in vivo ofrece ventajas como la esterilidad, interacción celular, nutrientes; es senci-llo, factible y económico, pero no hay control del crecimiento celular y vascularización, y los tejidos presentaron alteraciones mecánicas e histológicas. El polímero impidió la re-epitelialización y revascularización. Este estudio abre la posibilidad de mejorar las me-todologías de ingeniería tisular aplicadas al tejido traqueal.


Abstract Introduction: tissue engineering makes it possible to obtain organs as grafts from de-cellularized tissues, regenerated with autologous cells.Objective: decellularize and regenerate porcine tracheas.ARTÍCULO ORIGINAL | Respirar, 2023; 15(3): 188-199 | ISSN 2953-3414 | https://doi.org/10.55720/respirar.15.3.5RECIBIDO: 9 agosto 2023ACEP TADO: 31 agosto 2023 Elisa Barrera-Ramírezhttps://orcid.org/0000-0002-2778-0882Rubén Efraín Garrido-Cardonahttps://orcid.org/0000-0001-6083-5403Alejandro Martínez-Martínezhttps://orcid.org/0000-0003-3448-910XLuis Fernando Plenge-Tellecheahttps://orcid.org/0000-0002-1619-5004Edna Rico-Escobarhttps://orcid.org/0000-0002-0933-0220Esta revista está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional. Respirar 2023; 15 (3): 189ARTÍCULO ORIGINAL / E. Barrera-Ramírez, R.E. Garrido-Cardona, A. Martínez-Martínez, L.F. Plenge-Tellechea, E. Rico-EscobarDescelularización y regeneración de tráqueaISSN 2953-3414Materials and Methods: Porcine tracheas were decellularized by placing each one in the omentum of four Yorkshire pigs for regeneration in vivo. A trachea decellularized with triton (DT), decellularized with deoxycholate (DD), decellularized with deoxycho-late and reinforced with a polymer, and epithelial cells (DDR), and a cryopreserved na-tive (NC). After 8 days, the DD, NC and DDR were obtained; and on day 15, the DT. The evaluation was mechanically and histologically, performing the case analysis.Results: the decellularized tracheas preserved the integrity of the cartilage, with no me-chanical differences, except for the DDR with greater rigidity. The regenerated trache-as presented less rigidity, except the DDR, which also lost the epithelium and vascular-ity. The DT, DD showed non-respiratory epithelium, fibrosis and vasculogenesis with inflammation.Conclusions: the matrices retained their mechanical characteristics, in vivo regenera-tion offers advantages such as sterility, cell interaction, nutrients; it is simple, feasible and economical, but there is no control of cell growth and vascularization, and the tis-sues presented mechanical and histological alterations. The polymer prevented re-epi-thelialization and revascularization. This study opens the possibility of improving tissue engineering methodologies applied to tracheal tissue.


Assuntos
Animais , Masculino , Feminino , Regeneração/fisiologia , Traqueia/anatomia & histologia , Engenharia Tecidual/métodos , Octoxinol , Ácido Desoxicólico , Matriz Extracelular Descelularizada
2.
Journal of Southern Medical University ; (12): 157-165, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971510

RESUMO

OBJECTIVE@#The prepare decellularized extracellular matrix (ECM) scaffold materials derived from human cervical carcinoma tissues for 3D culture of cervical carcinoma cells.@*METHODS@#Fresh human cervical carcinoma tissues were treated with sodium lauryl ether sulfate (SLES) solution to prepare decellularized ECM scaffolds. The scaffolds were examined for ECM microstructure and residual contents of key ECM components (collagen, glycosaminoglycan, and elastin) and genetic materials by pathological staining and biochemical content analysis. In vitro 3D culture models were established by injecting cultured cervical cancer cells into the prepared ECM scaffolds. The cells in the recellularized scaffolds were compared with those in a conventional 2D culture system for cell behaviors including migration, proliferation and epithelial-mesenchymal transition (EMT) wsing HE staining, immunohistochemical staining and molecular biological technology analysis. Resistance to 5-fluorouracil (5-Fu) of the cells in the two culture systems was tested by analyzing the cell apoptosis rates via flow cytometry.@*RESULTS@#SLES treatment effectively removed cells and genetic materials from human cervical carcinoma tissues but well preserved the microenvironment structure and biological activity of ECM. Compared with the 2D culture system, the 3D culture models significantly promoted proliferation, migration, EMT and 5-Fu resistance of human cervical cancer cells.@*CONCLUSION@#The decellularized ECM scaffolds prepared using human cervical carcinoma tissues provide the basis for construction of in vitro 3D culture models for human cervical cancer cells.


Assuntos
Feminino , Humanos , Matriz Extracelular Descelularizada , Matriz Extracelular , Neoplasias do Colo do Útero , Alicerces Teciduais/química , Carcinoma , Fluoruracila/farmacologia , Engenharia Tecidual , Microambiente Tumoral
3.
Frontiers of Medicine ; (4): 56-82, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929195

RESUMO

Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.


Assuntos
Humanos , Diferenciação Celular , Proliferação de Células , Matriz Extracelular Descelularizada , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA