Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 531-544, 2014.
Artigo em Chinês | WPRIM | ID: wpr-279485

RESUMO

Bioremediation is one of the most effective ways to treat and dispose of chlorinated hydrocarbons, and methanotrophs are potentially useful to do so. Recent studies found that facultative methanotrophs can use compounds containing C-C bond as sources of carbon and energy, thus overcoming the limitation that obligate methanotrophsone uses only C1 compounds for this process. This is a unique metabolic approach that is becoming increasingly attractive in the field of contaminant biodegradation. Here, we summarized the bioremediation of chlorinated hydrocarbons by obligate and facultative methanotrophs. This process involves the degradation of various chlorinated hydrocarbons by diverse strains, including pure cultures and mixed cultures. We also compare the activity expression and catalytic properties of different types of methane monooxygenases in various substrates. We furthermore summarize the kinetic characteristics of the degradation of chlorinated hydrocarbons using the model strain Methylosinus trichosporium OB3b, and outline the degradation and potential of chlorinated hydrocarbons by facultative methanotrophs. Lastly, we discuss current problems and future research directions for degradation of chlorinated hydrocarbons by methanotrophs.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Clorados , Metabolismo , Methylosinus trichosporium , Metabolismo , Oxigenases , Metabolismo
2.
Braz. j. microbiol ; 40(2): 301-307, Apr.-June 2009. graf, tab
Artigo em Inglês | LILACS | ID: lil-520234

RESUMO

The microbial oxidation of methane in the atmosphere is performed by methanotrophic bacteria that use methane as a unique source of carbon and energy. The objective of this work consisted of the investigation of the best conditions of methane biodegradation by methanotrophic bacteria Methylosinus trichosporium OB3b that oxidize it to carbon dioxide, and the use of these microorganisms in monitoring methods for methane. The results showed that M. trichosporium OB3b was capable to degrade methane in a more effective way with an initial microorganism concentration of 0.0700 g.L-1, temperature of 30ºC, pH 6.5 and using 1.79 mmol of methane. In these same conditions, there was no bacterial growth when 2.69 mmol of methane was used. The specific rate of microorganism growth, the conversion factor, the efficiency and the volumetric productivity, for the optimized conditions of biodegradation were, respectively, 0.0324 h-1, 0.6830 gcells/gCH4, 73.73% and 2.7732.10-3 gcells/L.h. The final product of methane microbiological degradation, carbon dioxide, was quantified through the use of a commercial electrode, and, through this, the grade of methane conversion in carbon dioxide was calculated.


A oxidação microbiológica de metano na atmosfera é realizada por bactérias metanotróficas, que o utilizam como fonte única de carbono e energia. O objetivo deste trabalho consistiu na investigação das melhores condições de biodegradação do metano por bactérias metanotróficas Methylosinus trichosporium OB3b, que o oxidam a dióxido de carbono, para o emprego destes microrganismos em métodos de monitoração para metano. Os resultados obtidos mostraram que M.trichosporium OB3b foi capaz de degradar o metano de forma mais eficaz partindo-se de uma concentração inicial de microrganismos de 0.0700 g.L-1, a uma temperatura de 30ºC, pH igual a 6.5 e empregando-se 1.79 mmol de metano. Nestas mesmas condições, não houve crescimento bacteriano quando foram empregados 2.69 mmol de metano. A taxa específica de crescimento do microrganismo, o fator de conversão, a eficiência e a produtividade volumétrica para as condições otimizadas de biodegradação foram, respectivamente, 0.0324 h-1, 0.6830 gcélulas/gCH4, 73.73% e 2.7732.10-3 gcélulas/L.h. O produto final da degradação microbiológica do metano, o dióxido de carbono, foi quantificado através do emprego de um eletrodo comercial, e, através desta medida, foi calculado o percentual de conversão de metano em dióxido de carbono.


Assuntos
Biodegradação Ambiental , Ativadores de Enzimas , Metano/análise , Methylosinus trichosporium/isolamento & purificação , Oxidação/análise , Métodos , Métodos
3.
Chinese Journal of Biotechnology ; (12): 1007-1012, 2006.
Artigo em Chinês | WPRIM | ID: wpr-325434

RESUMO

Methanotrophs can catalyze hydroxylate of methane and some hydrocarbon. Which play an important role in mitigating global warming and have also potential significance for industrial applications or bioremediation. A high activity of hydroxylase, a crucial component in sMMO, from Methylosinus trichosporium IMV 3011 has been purified to homologues by using chromatographic techniques. The molecular weight of the hydroxylase determined by gel filtration is 201.3 kD, and SDS-PAGE showed that hydroxylase consists of three subunits(alpha beta gamma) with molecular weights of 58kD, 36kD and 23kD respectively, drawing a comparison both methods indicated that the hydroxylase is a homodimer with an (alpha beta gamma)2 configuration. Purified hydroxylase has a pI at 5.2 judged by thin layer isoelectric focusing. The purified hydroxylase contains 3.02 mol of iron per mol of protein. The stability pH for the hydroxylase in solution is 5.8-8.0 and the stability temperature is below 35 degrees C. The cells form show a long, bent, and rod-shaped with even surface observed by scanning electron microscopy.


Assuntos
Fenômenos Químicos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ferro , Metabolismo , Methylosinus trichosporium , Microscopia Eletrônica , Oxigenases , Química , Metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA