Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
China Journal of Chinese Materia Medica ; (24): 6294-6306, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008828

RESUMO

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologia
2.
Rev. méd. Chile ; 142(3): 353-360, mar. 2014. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-714360

RESUMO

The endocannabinoid system (SEC) is an important modulator of several metabolic functions. This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome. Liver steatosis of different origins constitutes a physiopathological condition where an altered hepatic SEC is observed. In this condition, there is an increased expression of RCB1 and/or higher endocannabinoid levels in different hepatic cells, which may exert an autocrine/paracrine hyperstimulation of RCB1/RCB2. Activation of RCB1 stimulate the expression of several hepatocyte lipogenic factors, thus leading to increased de novo fatty acids synthesis and consequently to an abnormal accumulation of triglycerides. The effect of RCB2 activity on hepatic function is still controversial because, on one side its stimulation has an interesting protective effect on alcoholic liver disease while, on the other, it may enhance the development of hepatic steatosis in experimental models of diet-induced obesity. In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.


Assuntos
Humanos , Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides/fisiologia , Fígado Gorduroso/etiologia , Receptor CB1 de Canabinoide/fisiologia , Fígado Gorduroso/fisiopatologia , /fisiologia
3.
Acta Physiologica Sinica ; (6): 451-460, 2013.
Artigo em Inglês | WPRIM | ID: wpr-297550

RESUMO

The plant Cannabis has been used in clinic for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain. In this text, we'll review the components of the endogenous cannabinoid system as well as its role in the regulation of gastrointestinal activities, thus providing relative information for further study. Moreover, modulation of the endogenous cannabinoid system in gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders.


Assuntos
Animais , Humanos , Moduladores de Receptores de Canabinoides , Farmacologia , Endocanabinoides , Fisiologia , Gastroenteropatias , Trato Gastrointestinal , Fisiologia
4.
Chinese Journal of Oncology ; (12): 256-259, 2011.
Artigo em Chinês | WPRIM | ID: wpr-303340

RESUMO

<p><b>OBJECTIVE</b>To study the influences of endocannabinoid-anandamide (AEA) on the proliferation and apoptosis of the colorectal cancer cell line (CaCo-2) and to elucidate the effects of CB1 and lipid rafts, and to further elucidate the molecular mechanism and the effect of AEA on the generation and development of colorectal cancer.</p><p><b>METHODS</b>Human colorectal cancer cell line CaCo-2 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum in 5% CO(2) atmosphere at 37°C. CaCo-2 cells were divided into different groups and treated with different concentrations of AEA, AEA + SR141716A, AEA + AM630 and AEA + methyl-β-cyclodextrin (MCD). MTT assay was used to determine the effects of AEA, its putative CB1, CB2 receptor antagonists (SR141716A and AM630) and MCD on the proliferation of CaCo-2 cells. Annexin V-PE/7AAD binding assay was used to detect apoptosis in the CaCo-2 cells. Western-blot was applied to check the expressions of CB1, CB2, p-AKT and caspase-3 proteins in different groups of CaCo-2 cells.</p><p><b>RESULTS</b>AEA inhibited the proliferation of CaCo-2 cells in a concentration-dependent manner and the effect could be antagonized by SR141716A and MCD. The inhibiting rates were (21.52 ± 0.45)%, (42.16 ± 0.21)%, (73.64 ± 0.73)% and (83.28 ± 0.71)%, respectively, at different concentrations of AEA (5, 10, 20 and 40 µmol/L). The three groups (20 µmol/L AEA, 20 µmol/L AEA + 10 µmol/L SR141716A and 20 µmol/L AEA + 1 mmol/L MCD) showed different inhibiting rates [(73.64 ± 0.73)%, (16.15 ± 0.75)% and (12.58 ± 0.63)%], respectively. Annexin V-PE/7AAD binding assay showed that AEA induced apoptosis in the CaCo-2 cells and MCD could antagonize this effect. The apoptosis rates of the three groups (control, 20 µmol/L AEA and 20 µmol/L AEA + 1 mmol/L MCD) were (2.95 ± 0.73)%, (39.61 ± 0.73)% and (14.10 ± 0.64)%, respectively. The expressions of CB1, CB2, p-AKT and Caspase-3 proteins were all observed in the CaCo-2 cells. AEA inhibited p-AKT protein expression and induced caspase-3 protein expression. The two actions were also antagonized by MCD.</p><p><b>CONCLUSIONS</b>AEA can strongly suppress the proliferation of colorectal cancer CaCo-2 cells via the CB1 receptor and membrane cholesterol-LRs and induce apoptosis via lipid rafts. Anandamide plays a very important role in the carcinogenesis and development of colorectal cancer. MCD is a critical member in this system.</p>


Assuntos
Humanos , Antineoplásicos , Farmacologia , Apoptose , Ácidos Araquidônicos , Farmacologia , Células CACO-2 , Moduladores de Receptores de Canabinoides , Farmacologia , Caspase 3 , Metabolismo , Proliferação de Células , Relação Dose-Resposta a Droga , Endocanabinoides , Indóis , Farmacologia , Microdomínios da Membrana , Metabolismo , Piperidinas , Farmacologia , Alcamidas Poli-Insaturadas , Farmacologia , Proteínas Proto-Oncogênicas c-akt , Metabolismo , Pirazóis , Farmacologia , Receptor CB1 de Canabinoide , Metabolismo , Receptor CB2 de Canabinoide , Metabolismo , beta-Ciclodextrinas , Metabolismo
5.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 32(supl.1): 57-514, maio 2010. ilus, tab
Artigo em Português | LILACS | ID: lil-547317

RESUMO

OBJETIVO: Este artigo revisa o sistema endocanabinoide e as respectivas estratégias de intervenções farmacológicas. MÉTODO: Realizou-se uma revisão da literatura sobre o sistema endocanabinoide e a sua farmacologia, considerando-se artigos originais ou de revisão escritos em inglês. DISCUSSÃO: Canabinoides são um grupo de compostos presentes na Cannabis Sativa (maconha), a exemplo do Δ9-tetraidrocanabinol e seus análogos sintéticos. Estudos sobre o seu perfil farmacológico levaram à descoberta do sistema endocanabinoide do cérebro de mamíferos. Este sistema é composto por pelo menos dois receptores acoplados a uma proteína G, CB1 e CB2, pelos seus ligantes endógenos (endocanabinoides; a exemplo da anandamida e do 2-araquidonoil glicerol) e pelas enzimas responsáveis por sintetizá-los e metabolizá-los. Os endocanabinoides representam uma classe de mensageiros neurais que são sintetizados sob demanda e liberados de neurônios pós-sinápticos para restringir a liberação de neurotransmissores clássicos de terminais pré-sinápticos. Esta sinalização retrógrada modula uma diversidade de funções cerebrais, incluindo ansiedade, medo e humor, em que a ativação de receptores CB1 pode exercer efeitos dos tipos ansiolítico e antidepressivo em estudos préclínicos. CONCLUSÃO: Experimentos com modelos animais sugerem que drogas que facilitam a ação dos endocanabinoides podem representar uma nova estratégia para o tratamento de transtornos de ansiedade e depressão.


OBJECTIVE: The present review provides a brief introduction into the endocannabinoid system and discusses main strategies of pharmacological interventions. METHOD: We have reviewed the literature relating to the endocannabinoid system and its pharmacology; both original and review articles written in English were considered. DISCUSSION: Cannabinoids are a group of compounds present in Cannabis Sativa (hemp), such as Δ9-tetrahydrocannabinol, and their synthetic analogues. Research on their pharmacological profile led to the discovery of the endocannabinoid system in the mammalian brain. This system comprises at least two G-protein coupled receptors, CB1 and CB2, their endogenous ligands (endocannabinoids; e.g. the fatty acid derivatives anandamide and 2-arachydonoyl glycerol), and the enzymes responsible for endocannabinoid synthesis and catabolism. Endocannabinoids represent a class of neuromessengers, which are synthesized on demand and released from post-synaptic neurons to restrain the release of classical neurotransmitters from pre-synaptic terminals.This retrograde signalling modulates a variety of brain functions, including anxiety, fear and mood, whereby activation of CB1 receptors was shown to exert anxiolytic-and antidepressant-like effects in preclinical studies. CONCLUSION: Animal experiments suggest that drugs promoting endocannabinoid action may represent a novel strategy for the treatment of depression and anxiety disorders.


Assuntos
Animais , Humanos , Transtornos de Ansiedade/tratamento farmacológico , Moduladores de Receptores de Canabinoides/uso terapêutico , Depressão/tratamento farmacológico , Endocanabinoides , Transtornos de Ansiedade/metabolismo , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/metabolismo , Depressão/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Chinese Journal of Hepatology ; (12): 204-208, 2010.
Artigo em Chinês | WPRIM | ID: wpr-247557

RESUMO

<p><b>OBJECTIVE</b>To study the effect of anandamide (AEA) on necrosis in HepG2 cells and to explore the role of AEA in progression of liver cancer.</p><p><b>METHODS</b>Localization of the fatty acid hydrolytic enzyme (FAAH), cannabinoid receptors 1(CB1) and cannabinoid receptors 2 (CB2) proteins was detected in L02 and HepG2 cells using immunofluorescence. L02 and HepG2 cells were treated with different concentrations of AEA and methyl-beta-cyclodextrin, and the rates of cells necrosis were examined by PI stain. Meanwhile, the expression levels of FAAH, CB1 and CB2 receptor proteins, as well as P38 mitogen-activated protein kinase (p-P38 MAPK) and c-Jun-NH2-terminal kinase (p-JNK) proteins, were analyzed by Western blot.</p><p><b>RESULTS</b>The FAAH, CB1 and CB2 receptor proteins were observed both in cytoplasm and on membrane in L02 and HepG2 cells. The expression level of FAAH protein was higher in HepG2 than in L02 cells. The expression level of CB1 receptor protein was very low in both L02 and HepG2 cells. The expression level of CB2 receptor protein was high in both L02 and HepG2 cells. AEA treatment induced necrosis in HepG2 cells but not in L02 cells. Methyl-beta-cyclodextrin treatment prevented necrosis in HepG2 cells (t = 3.702; 5.274; 3.503, P less than 0.05). The expression patterns of FAAH, CB1 and CB2 receptor protein in L02 and HepG2 cells were confirmed by western blot, which were consistent with the immunofluorescence results. AEA treatment increased the levels of p-P38MAPK and p-JNK proteins in a dose-dependent manner in HepG2 cells (F = 11.908; 26.054, P less than 0.05) and the increase can be partially by prevented by MCD (t = 2.801; t = 12.829, P less than 0.05).</p><p><b>CONCLUSION</b>AEA treatment induces necrosis in HepG2 cells via CB1 and CB2 receptors and lipid rafts.</p>


Assuntos
Humanos , Amidoidrolases , Metabolismo , Ácidos Araquidônicos , Farmacologia , Moduladores de Receptores de Canabinoides , Farmacologia , Colesterol , Metabolismo , Endocanabinoides , Células Hep G2 , Proteínas Quinases JNK Ativadas por Mitógeno , Metabolismo , Necrose , Alcamidas Poli-Insaturadas , Farmacologia , Receptor CB1 de Canabinoide , Metabolismo , Receptor CB2 de Canabinoide , Metabolismo , Transdução de Sinais , beta-Ciclodextrinas , Farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno , Metabolismo
7.
Neuroscience Bulletin ; (6): 153-160, 2009.
Artigo em Inglês | WPRIM | ID: wpr-282069

RESUMO

Being a great threaten for human health, obesity has become a pandemic chronic disease. There have been several therapeutic treatments for this social health issue, including diet and exercise therapy, medication and surgery, among which the diet is still the most common way. However, none of these therapeutic measures available is ideal, making it necessary to find an effective medical treatment. The endocannabinoid system, which is well known for its contributions in certain mental processes such as relaxation, amelioration of pain and anxiety, and sedation initiation, has been recently reported to play an essential role in regulating appetite and metabolism to maintain energy balance, leading to the belief that endocannabinoid system is closely related to obesity. This new discovery deepens our understanding of obesity, and provides us with a new direction for clinical obesity treatment. Rimonabant is an antagonist for CB1, and has entered the market in some countries. However, although effective as an anti-obesity drug, rimonabant also causes obviously adverse side-effects, thus is being doubted and denied for medical usage.


Assuntos
Animais , Humanos , Fármacos Antiobesidade , Usos Terapêuticos , Moduladores de Receptores de Canabinoides , Metabolismo , Endocanabinoides , Obesidade , Tratamento Farmacológico , Metabolismo , Piperidinas , Usos Terapêuticos , Pirazóis , Usos Terapêuticos , Receptores de Canabinoides , Metabolismo
8.
Chinese Journal of Hepatology ; (12): 430-434, 2008.
Artigo em Chinês | WPRIM | ID: wpr-332211

RESUMO

<p><b>OBJECTIVE</b>To study the effects of endogenous cannabinoid anandamide (AEA) and its putative endocannabinoid receptors (CBR) on the activation and proliferation of hepatic stellate cells (HSC) and to study the role played by AEA during liver fibrosis.</p><p><b>METHODS</b>By using immunofluorescence and cell culture, the expression of CBR 1 and 2 in the PDGF-stimulated HSCs was investigated. By using PCR and Western-blot, the effects of 10, 20mumol/L AEA and CBR2 antagonist AM630 on the cultured and activated HSC were observed. Methyl thiazolyl tetrazolium and flow cytometry were used to investigate whether AEA induces growth inhibition or apoptosis in the activated HSCs.</p><p><b>RESULTS</b>Both CBR1 and CBR2 receptors were detectable in cultured HSCs with a higher level of CBR2 than CBR1 (F = 116.797, P less than 0.01). When HSCs were stimulated by PDGF, the expression of CBR2 receptors was significantly enhanced (F = 7.878, P less than 0.05). HSC proliferation was dose-dependently inhibited by 10, 20, and 50micromol/L AEA, with the rates of 7.12%+/-0.34%, 12.52%+/-0.78%, 80.13%+/-1.57% respectively (F = 533.41, P less than 0.01). However, it did not induce apoptosis, but necrosis. The expressions of alpha-SMA, TGFb1, a1(I), a1(III) and TIMP-1 were significantly suppressed by 20micromol/L AEA, but CBR2 antagonist AM630 reversed this suppressor action of AEA.</p><p><b>CONCLUSIONS</b>AEA may inhibit activation and proliferation of HSCs; CBR2 receptors mediate AEA-induced inhibitory action on the activation of HSCs. This CBR2 receptor-mediated action and AEA on HSCs could be used as a therapeutic target against liver fibrosis.</p>


Assuntos
Animais , Ratos , Ácidos Araquidônicos , Farmacologia , Moduladores de Receptores de Canabinoides , Farmacologia , Proliferação de Células , Células Cultivadas , Endocanabinoides , Células Estreladas do Fígado , Biologia Celular , Metabolismo , Indóis , Farmacologia , Alcamidas Poli-Insaturadas , Farmacologia , Receptor CB2 de Canabinoide , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA