Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental & Molecular Medicine ; : e60-2013.
Artigo em Inglês | WPRIM | ID: wpr-152455

RESUMO

Alzheimer's disease (AD) is the most common cause of age-related dementia. The neuropathological hallmarks of AD include extracellular deposition of amyloid-beta peptides and neurofibrillary tangles that lead to intracellular hyperphosphorylated tau in the brain. Soluble amyloid-beta oligomers are the primary pathogenic factor leading to cognitive impairment in AD. Neural stem cells (NSCs) are able to self-renew and give rise to multiple neural cell lineages in both developing and adult central nervous systems. To explore the relationship between AD-related pathology and the behaviors of NSCs that enable neuroregeneration, a number of studies have used animal and in vitro models to investigate the role of amyloid-beta on NSCs derived from various brain regions at different developmental stages. However, the Abeta effects on NSCs remain poorly understood because of conflicting results. To investigate the effects of amyloid-beta oligomers on human NSCs, we established amyloid precursor protein Swedish mutant-expressing cells and identified cell-derived amyloid-beta oligomers in the culture media. Human NSCs were isolated from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres. Human NSCs exposure to cell-derived amyloid-beta oligomers decreased dividing potential resulting from senescence through telomere attrition, impaired neurogenesis and promoted gliogenesis, and attenuated mobility. These amyloid-beta oligomers modulated the proliferation, differentiation and migration patterns of human NSCs via a glycogen synthase kinase-3beta-mediated signaling pathway. These findings contribute to the development of human NSC-based therapy for AD by elucidating the effects of Abeta oligomers on human NSCs.


Assuntos
Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/farmacologia , Apoptose , Senescência Celular , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/química , Feto/citologia , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Transdução de Sinais , Encurtamento do Telômero
2.
Braz. j. med. biol. res ; 45(1): 58-67, Jan. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-610544

RESUMO

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15 percent increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52 percent compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.


Assuntos
Animais , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , /efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Apoptose/fisiologia , Diferenciação Celular , Proliferação de Células , Compostos Ferrosos/farmacologia , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Propionatos/farmacologia , Transdução de Sinais/fisiologia , Estaurosporina/farmacologia , /fisiologia
3.
Journal of Korean Medical Science ; : 1492-1498, 2010.
Artigo em Inglês | WPRIM | ID: wpr-14304

RESUMO

Neuronal apoptosis induced by amyloid beta-peptide (A beta) plays an important role in the pathophysiology of Alzheimer's disease (AD). However, the molecular mechanism underlying A beta-induced apoptosis remains undetermined. The disialoganglioside GD3 involves ceramide-, Fas- and TNF-alpha-mediated apoptosis in lymphoid cells and hepatocytes. Although the implication of GD3 has been suggested, the precise role of GD3 in A beta-induced apoptosis is still unclear. Here, we investsigated the changes of GD3 metabolism and characterized the distribution and trafficking of GD3 during A beta-induced apoptosis using human brain-derived TE671 cells. Extracellular A beta induced apoptosis in a mitochondrial-dependent manner. GD3 level was negligible in the basal condition. However, in response to extracellular A beta, both the expression of GD3 synthase mRNA and the intracellular GD3 level were dramatically increased. Neosynthesized GD3 rapidly accumulated in cell surface lipid microdomains, and was then translocated to mitochondria to execute the apoptosis. Disruption of membrane lipid microdomains with methyl-beta-cyclodextrin significantly prevented both GD3 accumulation in cell surface and A beta-induced apoptosis. Our data suggest that rapidly accumulated GD3 in plasma membrane lipid microdomains prior to mitochondrial translocation is one of the key events in A beta-induced apoptosis.


Assuntos
Humanos , Peptídeos beta-Amiloides/farmacologia , Apoptose , Linhagem Celular , Gangliosídeos/metabolismo , Microdomínios da Membrana/metabolismo , Mitocôndrias/metabolismo , Sialiltransferases/genética , beta-Ciclodextrinas/farmacologia
4.
Experimental & Molecular Medicine ; : 11-18, 2008.
Artigo em Inglês | WPRIM | ID: wpr-219398

RESUMO

Recent studies have reported that the "cholinergic anti-inflammatory pathway" regulates peripheral inflammatory responses via alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) and that acetylcholine and nicotine regulate the expression of proinflammatory mediators such as TNF-alpha and prostaglandin E2 in microglial cultures. In a previous study we showed that ATP released by beta-amyloid-stimulated microglia induced reactive oxygen species (ROS) production, in a process involving the P2X7 receptor (P2X7R), in an autocrine fashion. These observations led us to investigate whether stimulation by nicotine could regulate fibrillar beta amyloid peptide (1-42) (fA beta(1-42))-induced ROS production by modulating ATP efflux-mediated Ca2+ influx through P2X7R. Nicotine inhibited ROS generation in fA beta(1-42)-stimulated microglial cells, and this inhibition was blocked by mecamylamine, a non-selective nAChR antagonist, and a-bungarotoxin, a selective alpha7 nAChR antagonist. Nicotine inhibited NADPH oxidase activation and completely blocked Ca2+ influx in fA beta(1-42)-stimulated microglia. Moreover, ATP release from fA beta(1-42)-stimulated microglia was significantly suppressed by nicotine treatment. In contrast, nicotine did not inhibit 2',3'-O-(4-benzoyl)-benzoyl ATP (BzATP)-induced Ca2+ influx, but inhibited ROS generation in BzATP-stimulated microglia, indicating an inhibitory effect of nicotine on a signaling process downstream of P2X7R. Taken together, these results suggest that the inhibitory effect of nicotine on ROS production in fA beta(1-42)-stimulated microglia is mediated by indirect blockage of ATP release and by directly altering the signaling process downstream from P2X7R.


Assuntos
Animais , Ratos , Trifosfato de Adenosina/análogos & derivados , Amiloide/metabolismo , Peptídeos beta-Amiloides/farmacologia , Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Microglia/citologia , NADPH Oxidases/metabolismo , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Fragmentos de Peptídeos/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P2/metabolismo
5.
Experimental & Molecular Medicine ; : 820-827, 2007.
Artigo em Inglês | WPRIM | ID: wpr-62081

RESUMO

Present study demonstrated that fibrillar beta-amyloid peptide (fAbeta(1-42)) induced ATP release, which in turn activated NADPH oxidase via the P2X(7) receptor (P2X(7)R). Reactive oxygen species (ROS) production in fAbeta(1-42)-treated microglia appeared to require Ca2+ influx from extracellular sources, because ROS generation was abolished to control levels in the absence of extracellular Ca2+. Considering previous observation of superoxide generation by Ca2+ influx through P2X(7)R in microglia, we hypothesized that ROS production in fAbeta-stimulated microglia might be mediated by ATP released from the microglia. We therefore examined whether fAbeta(1-42)-induced Ca2+ influx was mediated through P2X(7)R activation. In serial experiments, we found that microglial pretreatment with the P2X(7)R antagonists Pyridoxal-phosphate-6-azophenyl-2',4'- disulfonate (100 micrometer) or oxidized ATP (100 micrometer) inhibited fAbeta-induced Ca2+ influx and reduced ROS generation to basal levels. Furthermore, ATP efflux from fAbeta(1-42)-stimulated microglia was observed, and apyrase treatment decreased the generation of ROS. These findings provide conclusive evidence that fAbeta-stimulated ROS generation in microglial cells is regulated by ATP released from the microglia in an autocrine manner.


Assuntos
Animais , Ratos , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Células Cultivadas , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2/fisiologia
6.
Journal of Korean Medical Science ; : 327-336, 2000.
Artigo em Inglês | WPRIM | ID: wpr-132612

RESUMO

Estrogen replacement therapy in postmenopausal women may reduce the risk of Alzheimer's disease, possibly by ameliorating neuronal degeneration. In the present study, we examined the neuroprotective spectrum of estrogen against excitotoxicity, oxidative stress, and serum-deprivation-induced apoptosis of neurons in mouse cortical cultures. 17beta-estradiol as well as 17alpha-estradiol and estrone attenuated oxidative neuronal death induced by 24 hr exposure to 100 microM FeCl2, excitotoxic neuronal death induced by 24 hr of exposure to 30 microM N-methyl-D-aspartate (NMDA) and serum-deprivation induced neuronal apoptosis. Furthermore, estradiol attenuated neuronal death induced by Abeta25-35. However, all these neuroprotective effects were mediated by the anti-oxidative action of estrogens. When oxidative stress was blocked by an antioxidant trolox, estrogens did not show any additional protection. Addition of a specific estrogen receptor antagonist ICI182,780 did not reverse the protection offered by estrogens. These findings suggest that high concentrations of estrogen protect against various neuronal injuries mainly by its anti-oxidative effects as previously shown by Behl et al. Our results do not support the view that classical estrogen receptors mediate neuroprotection.


Assuntos
Camundongos , Peptídeos beta-Amiloides/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , Cromanos/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/metabolismo , Estrona/farmacologia , Etilenodiaminas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Compostos Férricos/farmacologia , L-Lactato Desidrogenase/análise , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/citologia , Órgão Espiral/citologia , Fragmentos de Peptídeos/farmacologia , Estaurosporina/farmacologia
7.
Journal of Korean Medical Science ; : 327-336, 2000.
Artigo em Inglês | WPRIM | ID: wpr-132609

RESUMO

Estrogen replacement therapy in postmenopausal women may reduce the risk of Alzheimer's disease, possibly by ameliorating neuronal degeneration. In the present study, we examined the neuroprotective spectrum of estrogen against excitotoxicity, oxidative stress, and serum-deprivation-induced apoptosis of neurons in mouse cortical cultures. 17beta-estradiol as well as 17alpha-estradiol and estrone attenuated oxidative neuronal death induced by 24 hr exposure to 100 microM FeCl2, excitotoxic neuronal death induced by 24 hr of exposure to 30 microM N-methyl-D-aspartate (NMDA) and serum-deprivation induced neuronal apoptosis. Furthermore, estradiol attenuated neuronal death induced by Abeta25-35. However, all these neuroprotective effects were mediated by the anti-oxidative action of estrogens. When oxidative stress was blocked by an antioxidant trolox, estrogens did not show any additional protection. Addition of a specific estrogen receptor antagonist ICI182,780 did not reverse the protection offered by estrogens. These findings suggest that high concentrations of estrogen protect against various neuronal injuries mainly by its anti-oxidative effects as previously shown by Behl et al. Our results do not support the view that classical estrogen receptors mediate neuroprotection.


Assuntos
Camundongos , Peptídeos beta-Amiloides/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , Cromanos/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/metabolismo , Estrona/farmacologia , Etilenodiaminas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Compostos Férricos/farmacologia , L-Lactato Desidrogenase/análise , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/citologia , Órgão Espiral/citologia , Fragmentos de Peptídeos/farmacologia , Estaurosporina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA