Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Zhejiang University. Science. B ; (12): 275-280, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971487

RESUMO

Marine microorganisms, especially marine fungi, have historically proven their value as a prolific source for structurally novel and pharmacologically active secondary metabolites (Deshmukh et al., 2018; Carroll et al., 2022). The corals constitute a dominant part of reefs with the highest biodiversity, and harbor highly diverse and abundant microbial symbionts in their tissue, skeleton, and mucus layer, with species-specific core members that are spatially partitioned across coral microhabitats (Wang WQ et al., 2022). The coral-associated fungi were very recently found to be vital producers of structurally diverse compounds, terpenes, alkaloids, peptides, aromatics, lactones, and steroids. They demonstrate a wide range of bioactivity such as anticancer, antimicrobial, and antifouling activity (Chen et al., 2022). The genetically powerful genus Emericella (Ascomycota), which has marine and terrestrial sources, includes over 30 species and is distributed worldwide. It is considered a rich source of diverse secondary metabolites with antimicrobial activity or cytotoxicity (Alburae et al., 2020). Notably, Emericella nidulans, the sexual state of a classic biosynthetic strain Aspergillus nidulans, was recently reported as an important source of highly methylated polyketides (Li et al., 2019) and isoindolone-containing meroterpenoids (Zhou et al., 2016) with unusual skeletons.


Assuntos
Animais , Aspergillus nidulans , Policetídeos/química , Antozoários/microbiologia , Anti-Infecciosos/farmacologia , Alcaloides
2.
China Journal of Chinese Materia Medica ; (24): 2165-2169, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928156

RESUMO

Two new polyketides, lasobutone A(1) and lasobutone B(2), along with three known compounds, guignardianone C(3), guignardic acid(4), and 4-hydroxy-17R-methylincisterol(5), were isolated from the endophytic fungi Xylaria sp. by silica gel, MCI, and preparative HPLC, which was separated from the Chinese medicinal material Coptis chinensis and cultivated through solid fermentation with rice. Their structures were elucidated on the basis of spectroscopic methods, such as MS, NMR, IR, UV, and ECD. Compounds 2 and 4 showed inhibitory activities against the nitric oxide(NO) production in the LPS-induced macrophage RAW264.7 with IC_(50) values of 58.7 and 42.5 μmol·L~(-1) respectively, while compound 5 exhibited cytotoxic activities against HT-29 with IC_(50) value of 14.3 μmol·L~(-1).


Assuntos
Antineoplásicos , Coptis chinensis , Endófitos/química , Fungos , Policetídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA