Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Adicionar filtros








Intervalo de ano
1.
West China Journal of Stomatology ; (6): 328-335, 2021.
Artigo em Inglês | WPRIM | ID: wpr-878451

RESUMO

OBJECTIVES@#The effect of isoprenylcysteine carboxymethyltransferase (ICMT) silencing on the migration and invasion of tongue squamous cell carcinoma was investigated by constructing the small interfering RNA (siRNA) of ICMT.@*METHODS@#Through liposomal transfection, siRNA was transfected into human tongue squamous cell carcinoma CAL-27 and SCC-4 cells (ICMT-siRNA group) with a negative control group (transfected with NC-siRNA) and a blank control group (transfected with a transfection reagent but not with siRNA). Quantitative real-time polymerase chain reaction was performed to analyze the mRNA expression of ICMT and RhoA in each group of cells after transfection and to measure the silencing efficiency. Western blot was applied to examine the expression levels of ICMT, total RhoA, membrane RhoA, ROCK1, matrix metalloproteinase (MMP)-2, and MMP-9 proteins in each group. The migration and invasion abilities were evaluated via wound healing and Transwell motility assays.@*RESULTS@#After CAL-27 and SCC-4 cells were transfected with ICMT-siRNA, the expression levels of ICMT genes and proteins decreased significantly in the experimental group compared with those in the negative and blank control groups (@*CONCLUSIONS@#The migration and invasion abilities of CAL-27 and SCC-4 cells were reduced significantly after the transfection of ICMT-siRNA, and the involved mechanism might be related to the RhoA-ROCK signaling pathway.


Assuntos
Humanos , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Invasividade Neoplásica , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua , Neoplasias da Língua , Transfecção , Quinases Associadas a rho
2.
West China Journal of Stomatology ; (6): 64-73, 2021.
Artigo em Inglês | WPRIM | ID: wpr-878411

RESUMO

OBJECTIVES@#This study aimed to explore the effects of silencing isoprenylcysteine carboxyl methyltransfe-rase (Icmt) through small interfering RNA (siRNA) interference on the proliferation and apoptosis of tongue squamous cell carcinoma (TSCC).@*METHODS@#Three siRNA were designed and constructed for the Icmt gene sequence and were then transfected into TSCC cells CAL-27 and SCC-4 to silence Icmt expression. The tested cells were divided as follows: RNA interference groups Icmt-siRNA-1, Icmt-siRNA-2, and Icmt-siRNA-3, negative control group, and blank control group. The transfection efficiency of siRNA was detected by the fluorescent group Cy3-labeled siRNA, and the expression of Icmt mRNA was screened by quantitive real-time polymerase chain reaction (qRT-PCR) selected the experimental group for subsequent experiments. The expression of Icmt, RhoA, Cyclin D1, p21, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) were analyzed by Western blot. The proliferation abilities of TSCC cells were determined by cell counting kit-8 assay. The change in apoptosis was detected by AnnexinV-APC/propidium staining (PI) assay. Cell-cycle analysis was conducted by flow cytometry.@*RESULTS@#The expression of Icmt mRNA and protein in TSCC cells significantly decreased after Icmt-siRNA transfection (@*CONCLUSIONS@#Silencing Icmt can effectively downregulate its expression in TSCC cells, reduce the RhoA membrane targeting localization and cell proliferation, and induce apoptosis. Thus, Icmt may be a potential gene therapy target for TSCC.


Assuntos
Humanos , Apoptose , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua , Neoplasias da Língua
3.
Biol. Res ; 51: 39, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-983941

RESUMO

BACKGROUND: SET domain bifurcated 1 (SETDB1) has been widely considered as an oncogene playing a critical role in many human cancers, including breast cancer. Nevertheless, the molecular mechanism by which SETDB1 regulates breast cancer tumorigenesis is still unknown. METHODS: qRT-PCR assay or western blot analysis was performed to assess the expression level of SETDB1 mRNA or protein, respectively. siSETDB1, pCMV6-XL5-SETDB1, miR-381-3p mimic, or miR-381-3p inhibitor was transfected into cells to regulate the expression of SETDB1 or miR-381-3p. MiRNA directly interacted with SETDB1 was verified by luciferase reporter assay and RNA immunoprecipitation. CCK-8 assay, colony formation assay, flow cytometric analysis, and transwell assay were used to detect the abilities of cell proliferation, cell cycle progression and migration, respectively. Animal model of xenograft tumor was used to observe the regulatory effect of SETDB1 on tumor growth in vivo. RESULTS: We verified that SETDB1 mRNA level was upregulated in breast cancer tissues and cell lines, and SETDB1 depletion led to a suppression of cell proliferation, cell cycle progression and migration in vitro, as well as tumor growth in vivo. SETDB1 was verified to be a target of miR-381-3p. Moreover, miR-381-3p overexpression suppressed cell proliferation, cell cycle progression and migration, whereas SETDB1 abated miR-381-3p-mediated regulatory function on breast cancer cells. CONCLUSIONS: This study revealed that SETDB1 knockdown might suppress breast cancer progression at least partly by miR-381-3p-related regulation, providing a novel prospect in breast cancer therapy.


Assuntos
Humanos , Animais , Masculino , Feminino , Camundongos , Proteínas Metiltransferases/genética , Neoplasias da Mama/genética , MicroRNAs/metabolismo , Proteínas Metiltransferases/metabolismo , Células-Tronco , Neoplasias da Mama/patologia , Histona-Lisina N-Metiltransferase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Citometria de Fluxo , Camundongos Endogâmicos BALB C
4.
Acta Physiologica Sinica ; (6): 83-89, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255969

RESUMO

The aim of the present study was to investigate the regulatory effects of histone methylation modifications on the expression of miR-200c, as well as invasion and migration of gastric carcinoma cells. Gastric carcinoma cell line, MGC-803, were treated by 2.5 μmol/L histone methyltransferase inhibitor, DZNep. The expression of miR-200c was detected by real-time quantitative PCR (qRT-PCR). The epithelial-mesenchymal transition (EMT) indicators (ZEB1/2 and E/N-cadherin), EZH2, EED, SUZ12 and H3K27me3 expressions were detected by Western blot. Cell migration and invasion abilities were detected by Transwell and scratch tests. The result showed that, compared with DMSO (control) group, DZNep significantly increased the expression of miR-200c to about 2.1 times, inhibited ZEB1, ZEB2, and N-cadherin expressions, and activated E-cadherin expression; Also, DZNep decreased the protein expressions of EZH2, EED, SUZ12 and H3K27me3; Moreover, DZNep could inhibit MGC-803 cell invasive and migrative abilities, as well as MMP9 expression. These results suggest DZNep raises miR-200c expression to delay the invasion and migration of gastric carcinoma cells, and the underlying mechanisms involve the regulations of EMT-related proteins and polycomb repressive complex 2.


Assuntos
Humanos , Adenosina , Farmacologia , Caderinas , Metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Metabolismo , MicroRNAs , Metabolismo , Proteínas Metiltransferases , Proteínas Repressoras , Metabolismo , Fatores de Transcrição , Metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
5.
Yonsei Medical Journal ; : 292-303, 2014.
Artigo em Inglês | WPRIM | ID: wpr-174230

RESUMO

The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2(/TIS21/PC3).


Assuntos
Metilação , Proteínas Metiltransferases
6.
Experimental & Molecular Medicine ; : 550-560, 2011.
Artigo em Inglês | WPRIM | ID: wpr-131300

RESUMO

Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21(Cip/WAF1) activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21(Cip/WAF1) short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.


Assuntos
Animais , Camundongos , Arginina , Desdiferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metilação , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Miofibroblastos/patologia , Células NIH 3T3 , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/genética
7.
Experimental & Molecular Medicine ; : 550-560, 2011.
Artigo em Inglês | WPRIM | ID: wpr-131297

RESUMO

Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21(Cip/WAF1) activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21(Cip/WAF1) short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.


Assuntos
Animais , Camundongos , Arginina , Desdiferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metilação , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Miofibroblastos/patologia , Células NIH 3T3 , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/genética
8.
Acta Academiae Medicinae Sinicae ; (6): 692-695, 2009.
Artigo em Chinês | WPRIM | ID: wpr-301625

RESUMO

<p><b>OBJECTIVE</b>To construct the eukaryotic expression plasmid of mouse histone lysine methyltransferase Setd7 and detect its effect on neuron development.</p><p><b>METHODS</b>The clone of mouse Setd7 was obtained and inserted into the eukaryotic expression vector pCMV-3tag-6-Flag. The plasmid was transfected into HEK 293T and identified by Western blot. Real-time PCR was used to detect the effect of Setd7 on the neuron differentiation marker gene Ngn 1 mRNA expression. Dual luciferase reporter system was used to detect the effect of Setd7 on Ngn 1 mRNA expression. Real-time PCR was used to detect the effect of Setd 7 siRNA plasmid on Ngn 1 mRNA expression.</p><p><b>RESULTS</b>An eukaryotic expression plasmid of Setd 7 was successfully constructed. Setd7 induced Ngn 1 mRNA expression and increased Ngn 1 promoter activity. Also, the knockdown of Setd 7 inhibited Ngn 1 mRNA expression.</p><p><b>CONCLUSION</b>Histone lysine methyltransferase Setd7 can enhance neuron differentiation marker gene Ngn 1 transcription.</p>


Assuntos
Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Genética , Metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Células HEK293 , Histona-Lisina N-Metiltransferase , Genética , Metabolismo , Proteínas do Tecido Nervoso , Genética , Metabolismo , Proteínas Metiltransferases , Genética , Metabolismo , RNA Mensageiro , Genética , Transfecção
9.
Experimental & Molecular Medicine ; : 544-555, 2007.
Artigo em Inglês | WPRIM | ID: wpr-174048

RESUMO

We have investigated the function and mechanisms of the CARM1-SNF5 complex in T3-dependent transcriptional activation. Using specific small interfering RNAs (siRNA) to knock down coactivators in HeLa alpha2 cells, we found that coactivator associated arginine methyltransferase 1 (CARM1) and SWI/SNF complex component 5 (SNF5) are important for T3-dependent transcriptional activation. The CARM1- SWI/SNF chromatin remodeling complex serves as a mechanism for the rapid reversal of H3-K9 methylation. Importantly, siRNA treatment against CARM1 and/or SNF5 increased the recruitment of HMTase G9a to the type 1 deiodinase (D1) promoter even with T3. Knocking- down either CARM1 or SNF5 also inhibited the down- regulation of histone macroH2A, which is correlated with transcriptional activation. Finally, knocking down CARM1 and SNF5 by siRNA impaired the association of these coactivators to the D1 promoter, suggesting functional importance of CARM1- SNF5 complex in T3-dependent transcriptional activation.


Assuntos
Humanos , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Iodeto Peroxidase/metabolismo , Metilação , Regiões Promotoras Genéticas , Proteínas Metiltransferases , Proteína-Arginina N-Metiltransferases/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional
10.
Experimental & Molecular Medicine ; : 30-35, 1999.
Artigo em Inglês | WPRIM | ID: wpr-56321

RESUMO

C-Terminal carboxyl methylation of a human placental 23 kDa protein catalyzed by membrane-associated methyltransferase has been investigated. The 23 kDa protein substrate methylated was partially purified by DEAE-Sephacel, hydroxyapatite and Sephadex G-100 gel filtration chromatographies. The substrate protein was eluted on Sephadex G-100 gel filtration chromatography as a protein of about 29 kDa. In the absence of Mg2+, the methylation was stimulated by guanine nucleotides (GTP, GDP and GTPgammaS), but in the presence of Mg2+, only GTPgammaS stimulated the methylation which was similar to the effect on the G25K/rhoGDI complex. AFC, an inhibitor of C-terminal carboxyl methylation, inhibited the methylation of human placental 23 kDa protein. These results suggests that the substrate is a small G protein different from the G25K and is methylated on C-terminal isoprenylated cysteine residue. This was also confirmed by vapor phase analysis. The methylated substrate protein was redistributed to membrane after in vitro methylation, suggesting that the methylation of this protein is important for the redistribution of the 23 kDa small G protein for its putative role in intracellular signaling.


Assuntos
Feminino , Humanos , Gravidez , Cisteína/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Nucleotídeos de Guanina/farmacologia , Metilação , Placenta/metabolismo , Placenta/enzimologia , Proteínas da Gravidez/metabolismo , Proteínas Metiltransferases/metabolismo
11.
Experimental & Molecular Medicine ; : 227-234, 1998.
Artigo em Inglês | WPRIM | ID: wpr-159765

RESUMO

C-terminal farnesyl cysteine carboxyl methylation has been known to be the last step in the post-translational modification processes of several important signal transduction proteins in eukaryotes including ras related GTP binding proteins and the gamma-subunit of heterotrimeric G proteins. Protein farnesyl cysteine carboxyl methyltransferase (PFCCMT; EC, 2.1.1.100) catalyzing the reaction is well characterized as being stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and suppressed by N-acetyl-S-farnesyl-L-cysteine (AFC). As an initial step to understand the physiological significance of the process, we attempted to purify the enzyme, which was partially purified 130-fold (specific activity, 143 pmol of methyl group transferred/min/mg of protein) with yield of 1.8% after purification by fast protein liquid chromatography (FPLC) on a Superdex 75 column. The enzyme was further purified with non denaturing polyacrylamide gel electrophoresis (ND-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of PFCCMT was determined to be about 30 kDa based on Superdex 75 FPLC as well as photoaffinity labelling with S-adenosyl-L-[methyl-3H] methionine ([methyl-3H]SAM). The partially purified enzyme (Superdex 75 eluate) was found to be characteristically affected by GTP gamma S, being activated about 40-fold in 2 mM, in contrast to ATP which did not show any effect on enzyme activity. Meanwhile, the enzyme was found to be markedly inhibited by AFC, reaching 0 activity in 2 mM. These observations strongly suggested that the partially purified enzyme was PFCCMT.


Assuntos
Bovinos , Acetilcisteína/farmacologia , Acetilcisteína/análogos & derivados , Animais , Encéfalo/enzimologia , Cromatografia Líquida , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Peso Molecular , Proteínas Metiltransferases/isolamento & purificação , Proteínas Metiltransferases/química , Processamento de Proteína Pós-Traducional
12.
Experimental & Molecular Medicine ; : 35-43, 1997.
Artigo em Inglês | WPRIM | ID: wpr-179546

RESUMO

An accelerating effect of methyl-deficient diet (MDD) on hepatocarcinogenesis and methylation pattern of nuclear protein(s) by S-adenosylmethionine: protein arginine N-methyltransferase (protein methylase I, PM-I) have been studied with 3'-methyl-4-dimethyl- aminoazobenzene(MeDAB)-treated rats. The MDD+MeDAB-fed group produced typical cancer cells in the liver almost two weeks earlier than the control synthetic diet (CSD)+MeDAB-fed group. Protein methylase I (PM-I) activity in the livers of MDD alone fed rats began to increase at around 2 weeks after MDD-feeding, reaching a peak at 4 weeks and declining thereafter. When nuclei isolated either from normal livers or from cholangiocarcinoma cells were incubated with PM-I preparation from normal liver, 16 and 23-kDa nuclear proteins were the major methylated proteins, regardless of the source of the nuclei. However, when the above mentioned nuclei were incubated with PM-I preparations either from MDD alone fed livers or MDD+ MeDAB-induced cholangiocarcinoma cells, the methylation of 23-kDa protein was not detected. The result suggests that there is a hitherto-unknown PM-I specific to 23 kDa nuclear protein which was lost during methyl deficient diet feeding and hepatocarcinogenesis. The N-terminal 20 amino acids sequence of the 23-kDa protein was found to be (1)Gly-Val-Pro-Leu-(5)X-Arg-Leu-Phe-Asp-(10)His-Ala-Met-Leu-Gln-(15)Ala -His-Arg-Ala-His-(20)Glu, having 94.7% sequence homology with human chorionic somatomammotropin precursor A and B.


Assuntos
Animais , Ratos , Aminoácidos , Arginina , Carcinógenos , Carcinoma Hepatocelular , Diferenciação Celular , Divisão Celular , Proliferação de Células , Colangiocarcinoma , Dieta , Alimentos Formulados , Fígado , Metilação , Proteínas Nucleares , p-Dimetilaminoazobenzeno , Lactogênio Placentário , Proteínas Metiltransferases , Proteína-Arginina N-Metiltransferases , S-Adenosilmetionina , Homologia de Sequência
13.
Yonsei Medical Journal ; : 159-177, 1986.
Artigo em Inglês | WPRIM | ID: wpr-30819
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA