Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 49(1): 97-103, Jan.-Mar. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889210

RESUMO

ABSTRACT Freezing temperatures are a major challenge for life at the poles. Decreased membrane fluidity, uninvited secondary structure formation in nucleic acids, and protein cold-denaturation all occur at cold temperatures. Organisms adapted to polar regions possess distinct mechanisms that enable them to survive in extremely cold environments. Among the cold-induced proteins, cold shock protein (Csp) family proteins are the most prominent. A gene coding for a Csp-family protein, cspB, was cloned from an arctic bacterium, Polaribacter irgensii KOPRI 22228, and overexpression of cspB greatly increased the freeze-survival rates of Escherichia coli hosts, to a greater level than any previously reported Csp. It also suppressed the cold-sensitivity of an E. coli csp-quadruple deletion strain, BX04. Sequence analysis showed that this protein consists of a unique domain at its N-terminal end and a well conserved cold shock domain at its C-terminal end. The most common mechanism of Csp function in cold adaption is melting of the secondary structures in RNA and DNA molecules, thus facilitating transcription and translation at low temperatures. P. irgensii CspB bound to oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. The unprecedented level of freeze-tolerance conferred by P. irgensii CspB suggests a crucial role for this protein in survival in polar environments.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacteriaceae/fisiologia , Proteínas e Peptídeos de Choque Frio/metabolismo , Regiões Árticas , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Temperatura Baixa , Ecossistema , Flavobacteriaceae/isolamento & purificação , Flavobacteriaceae/genética , Proteínas e Peptídeos de Choque Frio/genética
2.
Acta Physiologica Sinica ; (6): 386-392, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255935

RESUMO

In this study, we intend to confirm our hypothesis that cold inducible RNA-binding protein (CIRP) can inhibit neuronal apoptosis through suppressing the formation of oxygen free radicals under hypothermia. Primary rat hippocampal neurons were isolated and cultured in vitro, and were divided into five groups: (1) normal control group (37 °C), (2) cells infected by empty viral vector group, (3) CIRP over-expressed group, (4) CIRP knock-down group, and (5) hypothermia control group. Cells in groups 2-5 were cultured under 32 °C, 5% CO2. Apoptosis of hippocampal neurons were detected by Annexin V-FITC/PI staining and flow cytometry; Expression of CIRP was determined by Western blot; Redox-related parameters (T-AOC, GSH-Px, SOD, MDA) were detected by ELISA kits. Results showed that CIRP expression levels were significantly increased (P < 0.01) and the apoptotic rates were significantly decreased (P < 0.01) in hypothermia control group and CIRP over-expressed group when compared with normal control group. On the other hand, the apoptotic rate was significantly increased (P < 0.05) in CIRP knock-down group compared with that in hypothermia control group. The levels of redox parameters in hypothermia control group and CIRP over-expressed group were significantly changed in comparison with those in normal control group, CIRP knock-down group and empty viral vector infected group, respectively (P < 0.05 or P < 0.01). These results suggest that up-regulation of CIRP by hypothermia treatment can protect the neuron from apoptosis through suppressing the formation of oxygen free radicals.


Assuntos
Animais , Ratos , Apoptose , Células Cultivadas , Proteínas e Peptídeos de Choque Frio , Metabolismo , Temperatura Baixa , Hipocampo , Biologia Celular , Hipotermia , Neurônios , Biologia Celular , Oxirredução , Proteínas de Ligação a RNA , Metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA