RESUMO
A insuficiência cardíaca (IC) é uma síndrome de elevada morbimortalidade, correspondendo a um grave problema de saúde pública. Uma das abordagens terapêuticas para IC consiste no uso de antagonistas do receptor de angiotensina II do tipo 1 (AT1R), conhecidos como sartanas. Estudos apontam que uma nova classe de compostos, os agonistas enviesados, é capaz de induzir a sinalização da via da ß-arrestina sem ativação da via da proteína G. Essa seletividade funcional é particularmente interessante, pois a via dependente da proteína G é responsável pelo aumento da pressão arterial, morte celular e fibrose tecidual, levando a hipertrofia cardíaca e progressão da IC. No entanto, a via da ß-arrestina está associada com renovação celular e aumento do inotropismo. Além disso, estudos in vivo sugerem que agonistas enviesados poderiam corresponder a uma terapia superior à dos antagonistas convencionais, que bloqueiam ambas as vias. Apesar do potencial terapêutico, esses compostos possuem estrutura peptídica e, por isso, tem sua administração restrita à via intravenosa. A resolução da estrutura cristalográfica do AT1R permitiu estudos de modelagem molecular mais acurados. Tendo isso em mente, nesse trabalho foram propostos agonistas enviesados de natureza não peptídica para o AT1R por meio de técnicas de modelagem molecular e validação das hipóteses levantadas por ensaios in vitro. Foram realizados estudos de dinâmica molecular com o AT1R (PDB ID: 4YAY) em uma bicamada lipídica e ensaios de ancoramento molecular da angiotensina II (AngII) e do ligante enviesado TRV027. As poses de ancoramento molecular selecionadas foram utilizadas em dinâmicas de complexo, que revelaram diferenças entre os sistemas apo (sem nenhum ligante) e holo (com o ligante no sitio de ligação). Nossos resultados sugerem que o TRV027 induz um padrão exclusivo de ligações de hidrogênio e de estrutura secundária, enquanto que a AngII afeta os resíduos do bolso hidrofóbico do sitio de ligação, principalmente a conformação do Trp2536.48. Com base nas simulações, três farmacóforos foram criados e utilizados de maneira complementar em triagens virtuais na base de dados ZINC15, resultando na seleção de cinco compostos. Um desses compostos apresentou afinidade pelo receptor AT1R e, ainda que estudos complementares de ativação de vias especificas sejam necessários para que o composto possa ser classificado como agonista enviesado, já se constitui em molécula potencialmente promissora. Além disso, esses estudos permitiram a proposição de estruturas inéditas que podem vir a ser hits no processo de desenvolvimento de agonistas enviesados para AT1R. Portanto, como continuidade desse trabalho, essas moléculas serão sintetizadas e investigadas quanto à possível interação com o receptor.
Heart Failure (HF) is a common syndrome with high morbimortality, being considered a serious public health problem. One of the therapeutic approaches for HF consists in the use of the sartan class, which are angiotensin II type 1 receptor (AT1R) antagonists. Recent studies have shown that a new class of compounds, known as biased agonists, is able to induce signaling via ß-arrestin without G-protein activation. This functional selectivity is particularly interesting since G-protein dependent signaling is responsible for cell death and cardiac tissue fibrosis, which leads to cardiac muscle hypertophy and HF progression. On the other hand, ß-arrestin signaling is associated with cellular renewal and increased inotropism. In vivo studies suggests that biased agonists could correspond to a superior therapy over conventional angiotensin II type 1 receptor antagonists, which blocks cell signaling as a whole, however their peptidic structure restricts their use to intravenous administration. Moreover, the AT1R crystal structure determination holds great promise for more accurate molecular modeling studies. With that being said, the aim of this work was to plan and develop new non-peptidic biased agonists for ATR1 employing molecular modeling techniques and in vitro tests for hypothesis validation. Molecular dynamics (MD) simulations of the refined AT1R crystal (PDB ID: 4YAY) embedded in a lipid bilayer and molecular docking studies with angiotensin II (AngII) and TRV027 (biased agonist) were conducted. Selected docking poses from both ligands underwent complex MD simulations revealing differences between apo (ligand free) and holo (ligand in the binding site) systems. Our results suggest that TRV027 induces an exclusive hydrogen bond and secondary structure pattern, while AngII affects the hydrophobic pocket conformation, mainly Trp253. Based on the simulations, three pharmacophore models were created and used in virtual screenings in the ZINC15 database, resulting in the selection of five compounds that were tested in vitro. One of the compounds displayed affinity for AT1R and is a promising molecule. Nonetheless, it needs further pathway activation characterization in order to be a classified as a biased agonist. Furthermore, these results have contributed significantly for the proposition of new structures that could be hits with biased agonist activity for AT1R. Thus, for future works, we point out the necessity for synthesis and characterization of this new compounds
Assuntos
Técnicas In Vitro/métodos , Angiotensina II/agonistas , Insuficiência Cardíaca/patologia , Ligantes , Organização e Administração , Receptores de Angiotensina/análise , Receptor Tipo 1 de Angiotensina/análise , MétodosRESUMO
In the past decade there have been considerable advances in basic knowledge of the renin-angiotensin system (RAS). The most important new development has been the appreciation of a tissue based RAS that can be independently regulated from the renal and vascular RAS. Greater insight into the mechanism by which angiotension-II (AII) exerts its action has been achieved through the study of molecular biology and pharmacological characterization of multiple receptor subtypes. This review summarises the features and distribution of several binding subtypes that may mediate the diverse functions of AII. Of these AT1 subtype is the most well known receptor which preferentially binds AII and AIII. The AT1 receptor site appears to mediate the classic angiotensin responses concerned with the body water balance and the maintenance of blood pressure. Less is known about the AT2 sites which also bind AII and AIII and may play a role in vascular growth. Recently, an AT3 has been discovered in cultured neuroblastoma cells and an AT4 site which preferentially binds AIV. It has been implicated in memory aquisition and retrieval and in the regulation of blood flow. Another important aspect covered is the primary and secondary messengers involved during the signal transduction after the binding of AII with receptors. A stress has also been given on the regulation of density and affinity of AII receptors by various physiological parametres as they affect the responses of RAS. Autoregulation by RAS, salt intake, development and aging and some of the hormones are important variables which could affect the AII receptors. Interactions of AII with various neuroeffector transmission involved in the regulation of water-electrolyte balance and BP regulation play an important role in the maintenance of the homeostasis. AII has been suggested to increase the NAergic transmission by enhancing synthesis, release, inhibiting reuptake by the presynaptic nerve terminals as well as enhancing cell responsiveness to the transmitter. The finding of existence of AII receptors in vagal afferent nerve terminals suggests that its baroreflex inhibitory effect is mediated by inhibiting neurotransmitter release at NTS in the baroreflex arc. Moreover, AII acts on the central receptors to stimulate AVP and ACTH secretion, drinking and peripherally increase synthesis and secretion of aldosterone. Interactions of RAS with kallikrein-kinin system and prostaglandins strongly support the existence of a balance between renal depressor and pressor substances. AII is now considered a growth promotor in cardiovascular tissues and the resultant vascular hypertrophy could contribute in the maintenance of hypertension. AII also plays a role in the kidney, not only as a regulator of hemodynamics but also in the structural changes occurring in a variety of renal disorders. In addition to the more well studied functions of RAS in RVH the review also highlights the potential contribution by the RAS to other clinically relevant syndromes such as aortoarterities induced RVH, hyperaldosteronism, heavy metal induced cardiovascular effects, diabetes mellitus and thyroid dysfunction. Although the receptor subtypes involved in these pathological states have not been definitely identified, research efforts in this direction are ongoing.