Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chinese Medical Journal ; (24): 105-114, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1007746

RESUMO

BACKGROUND@#Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.@*METHODS@#Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38.@*RESULTS@#lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer.@*CONCLUSION@#Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.


Assuntos
Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
2.
Chinese Medical Journal ; (24): 2086-2100, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007627

RESUMO

BACKGROUND@#Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.@*METHODS@#MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.@*RESULTS@#miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t  = 2.475, P  = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t  = 2.319, P  = 0.023) and poor prognosis ( P  < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t  = 16.290, P  < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t  = 17.530, P  < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t  = 4.223, P  = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t  = 31.050, P  < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t  = 16.620, P  < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t  = 3.297, P  = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .@*CONCLUSIONS@#Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.


Assuntos
Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , MicroRNAs/metabolismo , Autofagia/genética , Genes Reguladores , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias/genética
3.
Chinese Medical Journal ; (24): 2538-2550, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007615

RESUMO

Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion-metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , RNA não Traduzido/genética , MicroRNAs , RNA Longo não Codificante , RNA Circular/genética
4.
Chinese Medical Journal ; (24): 2576-2586, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007564

RESUMO

BACKGROUND@#Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC.@*METHODS@#Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection.@*RESULTS@#Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate.@*CONCLUSIONS@#This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.


Assuntos
Feminino , Humanos , Receptores de Progesterona/metabolismo , Proteômica , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Proliferação de Células/genética , Luciferases/farmacologia , Regulação Neoplásica da Expressão Gênica/genética
5.
Chinese Medical Journal ; (24): 2351-2361, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007550

RESUMO

BACKGROUND@#Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.@*METHODS@#CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.@*RESULTS@#RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.@*CONCLUSION@#CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.


Assuntos
Humanos , Células HeLa , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Vimentina/metabolismo , MicroRNAs/metabolismo , Neoplasias do Colo/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
6.
Chinese Medical Journal ; (24): 1719-1731, 2023.
Artigo em Inglês | WPRIM | ID: wpr-980961

RESUMO

BACKGROUND@#Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism.@*METHODS@#Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay.@*RESULTS@#In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells.@*CONCLUSION@#HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.


Assuntos
Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Hipóxia , MicroRNAs/genética , RNA , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Depuradores Classe B/metabolismo , Neoplasias Gástricas/genética
7.
Chinese Medical Journal ; (24): 1098-1110, 2023.
Artigo em Inglês | WPRIM | ID: wpr-980838

RESUMO

BACKGROUND@#Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer.@*METHODS@#LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 .@*RESULTS@#AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis.@*CONCLUSION@#AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.


Assuntos
Animais , Camundongos , Humanos , Feminino , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição da Família Snail/metabolismo
8.
Chinese Medical Journal ; (24): 714-723, 2022.
Artigo em Inglês | WPRIM | ID: wpr-927545

RESUMO

BACKGROUND@#Circular RNAs (circRNAs) are considered to be important regulators in cancer biology. In this study, we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein (IAP) repeat containing 6 (circBIRC6) on non-small cell lung cancer (NSCLC) progression.@*METHODS@#The NSCLC and adjacent non-tumor tissues were collected at Shanghai Ninth People's Hospital. Quantitative real-time polymerase chain reaction was conducted for assessing the levels of circBIRC6, amyloid beta precursor protein binding protein 2 (APPBP2) messenger RNA (mRNA), baculoviral IAP repeat containing 6 mRNA (BIRC6), and microRNA-217 (miR-217). Western blot assay was adopted for measuring the protein levels of APPBP2, E-cadherin, N-cadherin, and vimentin. Colony formation assay, transwell assay, and flow cytometry analysis were utilized for evaluating cell colony formation, metastasis, and apoptosis. Dualluciferase reporter assay and RNA immunoprecipitation assay were carried out to determine the interaction between miR-217 and circBIRC6 and APPBP2 in NSCLC tissues. The murine xenograft model assay was used to investigate the function of circBIRC6 in tumor formation in vivo. Differences were analyzed via Student's t test or one-way analysis of variance. Pearson's correlation coefficient analysis was used to analyze linear correlation.@*RESULTS@#CircBIRC6 was overexpressed in NSCLC tissues and cells. Knockdown of circBIRC6 repressed the colony formation and metastasis and facilitated apoptosis of NSCLC cells in vitro and restrained tumorigenesis in vivo. Mechanically, circBIRC6 functioned as miR-217 sponge to promote APPBP2 expression in NSCLC cells. MiR-217 inhibition rescued circBIRC6 knockdown-mediated effects on NSCLC cell colony formation, metastasis, and apoptosis. Overexpression of miR-217 inhibited the malignant phenotypes of NSCLC cells, while the effects were abrogated by elevating APPBP2.@*CONCLUSIONS@#CircBIRC6 aggravated NSCLC cell progression by elevating APPBP2 via sponging miR-217, which might provide a fresh perspective on NSCLC therapy.


Assuntos
Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Proliferação de Células/genética , China , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro
9.
Biol. Res ; 53: 10, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1100916

RESUMO

BACKGROUND: The aim of this study was to investigate the effect role and mechanism of miR-30b-3p on ovarian cancer cells biological function. METHODS: The expression of miR-30b-3p was detected in ovarian cancer cell lines and normal ovarian epithelial cell line by qRT-PCR. Mir-30b-3p mimic was transfected into OVCAR3 cells. Cell-counting kit-8 (CCK-8) assay was conducted to explore the effect of mir-30b-3p on the OVCAR3 cells' proliferation. Cell cycle and apoptosis were detected by Flow cytometry. Cell invasion ability was detected by Transwell test. The regulation of putative target of miR-30b-3p was verified by double luciferase reporter assays and Western blot. RESULT: We found that miR-30b-3p was downregulated in OVCAR3 cells. Overexpression of miR-30b-3p suppressed proliferation, promoted apoptosis, slowed cell cycle and inhibited migration and invasion of OVCAR3 cells. Bioinformatics analysis identified 3'-untranslated region (3'UTR) of Collagen triple helix repeat-containing 1 (CTHRC1) as the presumed binding site for miR-30b-3p. Detection of double luciferase reporter and Western-Blot result confirmed that CTHRC1 was the target gene of miR-30b-3p. Furthermore, E-cadherin, ß-cadherin and Vimentin protein expression level were changed after transfection of miR-30b-3p. CONCLUSION: miR-30b-3p function as an anti-cancer gene. Overexpression of miR-30b-3p can inhibit the biological function of ovarian cancer cells. MiR-30b-3p targets CTHRC1 gene plays an important role in epithelial-mesenchymal transformation (EMT), and supports miR-30b-3p as a potential biological indicator for ovarian cancer in the future.


Assuntos
Humanos , Feminino , Neoplasias Ovarianas/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas da Matriz Extracelular/genética , MicroRNAs/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Invasividade Neoplásica
10.
Arch. endocrinol. metab. (Online) ; 63(2): 142-147, Mar.-Apr. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1001213

RESUMO

ABSTRACT Objective: To verify the physiological action of triiodothyronine T3 on the expression of transforming growth factor α (TGFA) mRNA in MCF7 cells by inhibition of RNA Polymerase II and the MAPK/ERK pathway Materials and methods: The cell line was treated with T3 at a physiological dose (10−9M) for 10 minutes, 1 and 4 hour (h) in the presence or absence of the inhibitors, α-amanitin (RNA polymerase II inhibitor) and PD98059 (MAPK/ERK pathway inhibitor). TGFA mRNA expression was analyzed by RT-PCR. For data analysis, we used ANOVA, complemented with the Tukey test and Student t-test, with a minimum significance of 5%. Results: T3 increases the expression of TGFA mRNA in MCF7 cells in 4 h of treatment. Inhibition of RNA polymerase II modulates the effect of T3 treatment on the expression of TGFA in MCF7 cells. Activation of the MAPK/ERK pathway is not required for T3 to affect the expression of TGFA mRNA. Conclusion: Treatment with a physiological concentration of T3 after RNA polymerase II inhibition altered the expression of TGFA. Inhibition of the MAPK/ERK pathway after T3 treatment does not interfere with the TGFA gene expression in a breast adenocarcinoma cell line.


Assuntos
Humanos , Feminino , Tri-Iodotironina/genética , Neoplasias da Mama/genética , Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator de Crescimento Transformador alfa/genética , Sistema de Sinalização das MAP Quinases/genética , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Proto-Oncogenes/genética , Neoplasias da Mama/metabolismo , RNA Mensageiro/genética , Adenocarcinoma/metabolismo , Fator de Crescimento Transformador alfa/efeitos dos fármacos , Fator de Crescimento Transformador alfa/metabolismo , Linhagem Celular Tumoral/metabolismo , Células MCF-7/metabolismo
11.
Asian Journal of Andrology ; (6): 279-290, 2019.
Artigo em Inglês | WPRIM | ID: wpr-1009641

RESUMO

Epigenetics is the main mechanism that controls transcription of specific genes with no changes in the underlying DNA sequences. Epigenetic alterations lead to abnormal gene expression patterns that contribute to carcinogenesis and persist throughout disease progression. Because of the reversible nature, epigenetic modifications emerge as promising anticancer drug targets. Several compounds have been developed to reverse the aberrant activities of enzymes involved in epigenetic regulation, and some of them show encouraging results in both preclinical and clinical studies. In this article, we comprehensively review the up-to-date roles of epigenetics in the development and progression of prostate cancer. We especially focus on three epigenetic mechanisms: DNA methylation, histone modifications, and noncoding RNAs. We elaborate on current models/theories that explain the necessity of these epigenetic programs in driving the malignant phenotypes of prostate cancer cells. In particular, we elucidate how certain epigenetic regulators crosstalk with critical biological pathways, such as androgen receptor (AR) signaling, and how the cooperation dynamically controls cancer-oriented transcriptional profiles. Restoration of a "normal" epigenetic landscape holds promise as a cure for prostate cancer, so we concluded by highlighting particular epigenetic modifications as diagnostic and prognostic biomarkers or new therapeutic targets for treatment of the disease.


Assuntos
Humanos , Masculino , Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias da Próstata/genética
12.
Braz. j. med. biol. res ; 52(11): e8657, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1039263

RESUMO

Although Taxol has improved the survival of cancer patients as a first-line chemotherapeutic agent, an increasing number of patients develop resistance to Taxol after prolonged treatment. The potential mechanisms of cancer cell resistance to Taxol are not completely clear. It has been reported that microRNAs (miRNAs) are involved in regulating the sensitivity of cancer cells to various chemotherapeutic agents. In this study, we aimed to explore the role of miR-129-5p in regulating the sensitivity of breast cancer cells to Taxol. Cell apoptosis and autophagy, and the sensitivity of MCF-7 cells to Taxol were assessed with a series of in vitro assays. Our results showed that the inhibition of autophagy increased the Taxol-induced apoptosis and the sensitivity of MCF-7 cells to Taxol. Up-regulation of miR-129-5p also inhibited autophagy and induced apoptosis. Furthermore, miR-129-5p overexpression increased the sensitivity of MCF-7 cells to Taxol. High mobility group box 1 (HMGB1), a target gene of miR-129-5p and a regulator of autophagy, was negatively regulated by miR-129-5p. We found that interference of HMGB1 enhanced the chemosensitivity of Taxol by inhibiting autophagy and inducing apoptosis in MCF-7 cells. Taken together, our findings suggested that miR-129-5p increased the chemosensitivity of MCF-7 cells to Taxol through suppressing autophagy and enhancing apoptosis by inhibiting HMGB1. Using miR-129-5p/HMGB1/autophagy-based therapeutic strategies may be a potential treatment for overcoming Taxol resistance in breast cancer.


Assuntos
Humanos , Feminino , Neoplasias da Mama/metabolismo , Paclitaxel/metabolismo , Proteína HMGB1/metabolismo , MicroRNAs/metabolismo , Células MCF-7/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Autofagia/genética , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/genética , Regulação para Cima/genética , Paclitaxel/uso terapêutico , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína HMGB1/genética , MicroRNAs/genética , Antineoplásicos Fitogênicos/uso terapêutico
13.
Braz. j. med. biol. res ; 52(1): e7718, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-974272

RESUMO

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Assuntos
Humanos , Neoplasias Pancreáticas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Receptor Notch1/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Diferenciação Celular , Regulação para Cima , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptor Notch1/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
14.
Braz. j. med. biol. res ; 52(1): e7567, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-974265

RESUMO

Cervical cancer is one of the most common cancers among women around the world. However, the underlying mechanism involved in cervical cancer progression is incompletely known. In the present study, we determined the role of glycoprotein nonmetastatic melanoma protein B (GPNMB) in tumorigenesis of cervical cancer. According to the GEO database, we found that GPNMB expression was significantly higher in cervical cancer than in normal cervix epithelium. A similar pattern was observed in GPNMB expression in cultured cervical cancer cells and normal cervical epithelial cells. Compared with the control, GPNMB knockdown significantly decreased the proliferation and migration capacity, but enhanced the apoptosis capacity of SiHa and HeLa cells. Additionally, the activity of MMP-2 and MMP-9 were aberrantly increased in SiHa and HeLa cells compared with normal cervical epithelial cells, whereas their activities were strongly inhibited by GPNMB siRNA. Furthermore, Wnt/β-catenin signaling was activated by GPNMB in SiHa and HeLa cells. Increased MMP-2/MMP-9 expression was suppressed by Dkk-1, inhibitor of Wnt/β-catenin signaling, while it was enhanced by stimulator BIO. The proliferation, migration, and apoptosis capacity of HeLa cells were found to be affected by Dkk-1 and BIO to different extents. In conclusion, we demonstrated that GPNMB contributed to the tumorigenesis of cervical cancer, at least in part, by regulating MMP-2/MMP-9 activity in tumor cells via activation of canonical Wnt/β-catenin signaling. This might be a potential therapeutic target for treating human cervical cancer.


Assuntos
Humanos , Feminino , Glicoproteínas de Membrana/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias do Colo do Útero/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Glicoproteínas de Membrana/genética , Movimento Celular , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Western Blotting , Apoptose , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , beta Catenina/genética
15.
Yonsei Medical Journal ; : 226-235, 2018.
Artigo em Inglês | WPRIM | ID: wpr-713099

RESUMO

PURPOSE: Long non-coding RNA taurine upregulated gene 1 (TUG1) is reported to be a vital regulator of the progression of various cancers. This study aimed to explore the exact roles and molecular mechanisms of TUG1 in osteosarcoma (OS) development. MATERIALS AND METHODS: Real-time quantitative PCR was applied to detect the expressions of TUG1 and microRNA-132-3p (miR-132-3p) in OS tissues and cells. Western blot was performed to measure protein levels of sex determining region Y-box 4 (SOX4). Cell viability was assessed using XTT assay. Cell apoptosis was evaluated using flow cytometry and caspase-3 activity detection assays. Bioinformatics analysis and luciferase reporter experiments were employed to confirm relationships among TUG1, miR-132-3p, and SOX4. RESULTS: TUG1 was highly expressed in human OS tissues, OS cell lines, and primary OS cells. TUG1 knockdown hindered proliferation and induced apoptosis in human OS cell lines and primary OS cells. Moreover, TUG1 inhibited miR-132-3p expression by direct interaction, and introduction of miR-132-3p inhibitor partly abrogated the effect of TUG1 knockdown on the proliferation and apoptosis of OS cells. Furthermore, SOX4 was validated as a target of miR-132-3p. Further functional analyses revealed that miR-132-3p inhibited proliferation and induced apoptosis of OS cells, while this effect was greatly abated following SOX4 overexpression. Moreover, TUG1 knockdown suppressed proliferation and promoted apoptosis by upregulating miR-132-3p and downregulating SOX4 in primary OS cells. CONCLUSION: TUG1 facilitated proliferation and suppressed apoptosis by regulating the miR-132-3p/SOX4 axis in human OS cell lines and primary OS cells. This finding provides a potential target for OS therapy.


Assuntos
Humanos , Apoptose/genética , Biomarcadores Tumorais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , MicroRNAs/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXC/genética , Ativação Transcricional , Células Tumorais Cultivadas , Regulação para Cima
16.
Braz. j. med. biol. res ; 51(4): e6685, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889056

RESUMO

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC.


Assuntos
Humanos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Neoplasias Gástricas/genética , China/epidemiologia , Perfilação da Expressão Gênica , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática/genética , Prognóstico , RNA Mensageiro/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/secundário
17.
Braz. j. med. biol. res ; 51(6): e6452, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889104

RESUMO

Several microRNAs (miRNAs) have been reported as oncogenes or tumor suppressors in many cancers, including gastric cancer (GC). However, the role and molecular mechanism of miR-3129 in GC is largely unknown. We aimed to explore the function and the underlying molecular mechanism of miR-3129 in GC. Cancer tissues and corresponding adjacent tissues were collected from 50 patients with GC, and the expression of miR-3129 was detected by RT-qPCR. The expression of miR-3129 and pRb in human GC cell line SCG7091 was altered by transient transfection. Thereafter, MTT and flow cytometry assays were used to analyze cell viability and cell cycle. The expression of cyclin E, CDK2, CDK2 inhibitors (p16 and 21), and pRb were detected by RT-qPCR and western blot. A significant up-regulation of miR-3129 was observed in GC tissues compared to adjacent tissues. Overexpression of miR-3129 significantly improved cell viability after 4 days of post-transfection. Flow cytometry assay results showed that the miR-3129 overexpression arrested more SGC7901 cells at S phase. Moreover, overexpression of miR-3129 down-regulated the expression of CDK2 inhibitors while it up-regulated the expression levels of cyclin E, CDK2, and pRb. Interestingly, we found that pRb inhibition reversed the effect of miR-3129 inhibitor on cell proliferation in SGC7901 cells, increased cell viability, reduced cells at G0/1 phase, and modulated the expression of proliferation-related factors. Our results revealed that miR-3129 functioned as an oncogene through positive regulation of pRb and may prove to be a promising option for molecular therapy of GC.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Proliferação de Células/genética , Proteína do Retinoblastoma/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transfecção , Regulação para Cima
18.
Braz. j. med. biol. res ; 51(6): e6801, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889107

RESUMO

Gene networks have been broadly used to predict gene functions based on guilt by association (GBA) principle. Thus, in order to better understand the molecular mechanisms of esophageal squamous cell carcinoma (ESCC), our study was designed to use a network-based GBA method to identify the optimal gene functions for ESCC. To identify genomic bio-signatures for ESCC, microarray data of GSE20347 were first downloaded from a public functional genomics data repository of Gene Expression Omnibus database. Then, differentially expressed genes (DEGs) between ESCC patients and controls were identified using the LIMMA method. Afterwards, construction of differential co-expression network (DCN) was performed relying on DEGs, followed by gene ontology (GO) enrichment analysis based on a known confirmed database and DEGs. Eventually, the optimal gene functions were predicted using GBA algorithm based on the area under the curve (AUC) for each GO term. Overall, 43 DEGs and 67 GO terms were gained for subsequent analysis. GBA predictions demonstrated that 13 GO functions with AUC>0.7 had a good classification ability. Significantly, 6 out of 13 GO terms yielded AUC>0.8, which were determined as the optimal gene functions. Interestingly, there were two GO categories with AUC>0.9, which included cell cycle checkpoint (AUC=0.91648), and mitotic sister chromatid segregation (AUC=0.91597). Our findings highlight the clinical implications of cell cycle checkpoint and mitotic sister chromatid segregation in ESCC progression and provide the molecular foundation for developing therapeutic targets.


Assuntos
Humanos , Carcinoma de Células Escamosas/genética , Biologia Computacional/métodos , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Área Sob a Curva
19.
Biol. Res ; 51: 50, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-1011394

RESUMO

BACKGROUND: Accumulating studies have demonstrated that high-mobility group A2 (HMGA2), an oncofetal protein, plays a role in tumor development and progression. However, the molecular role of HMGA2 in ovarian carcinoma is yet to be established. MicroRNAs (miRNAs), a group of small noncoding RNAs, negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. The aim of this study was to investigate the potential involvement of a specific miRNA, miR-219-5p, in HMGA2-induced ovarian cancer. METHODS: The ovarian cancer cell line, SKOV3, was employed, and miR-219-5p and HMGA2 overexpression vectors constructed. The CCK-8 kit was used to determine cell proliferation and the Transwell® assay used to measure cell invasion and migration. RT-PCR and western blot analyses were applied to analyze the expression of miR-219-5p and HMGA2, and the luciferase reporter assay used to examine the interactions between miR-219-5p and HMGA2. Nude mice were employed to characterize in vivo tumor growth regulation. RESULTS: Expression of miR-219-5p led to suppression of proliferation, invasion and migration of the ovarian cancer cell line, SKOV3, by targeting HMGA2. The inhibitory effects of miR-219-5p were reversed upon overexpression of HMGA2. Data from the luciferase reporter assay showed that miR-219-5p downregulates HMGA2 via direct integration with its 3'-UTR. Consistent with in vitro findings, expression of miR-219-5p led to significant inhibition of tumor growth in vivo. CONCLUSION: Our results collectively suggest that miR-219-5p inhibits tumor growth and metastasis by targeting HMGA2.


Assuntos
Humanos , Animais , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Proteína HMGA2/metabolismo , MicroRNAs/fisiologia , Neoplasias Ovarianas/genética , Movimento Celular/genética , Proteína HMGA2/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Invasividade Neoplásica , Metástase Neoplásica
20.
Biol. Res ; 51: 51, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011395

RESUMO

BACKGROUND: Emerging evidence showed that microRNAs (miRs) play critical roles in human cancers by functioning as either tumor suppressor or oncogene. MIR-382 was found to function as tumor suppressor in certain cancers. However, the role of MIR-382 in colorectal cancer (CRC) is largely unknown. Specificity protein 1 (SP1) is highly expressed in several cancers including CRC and is correlated with poor prognosis, but it is unclear whether or not MIR-382 can regulate the expression of SP1. METHODS: MIR-382 expression level was measured by reverse transcription-quantitative polymerase chain reaction. The connection between MIR-382 and SP1 was validated by luciferase activity reporter assay and western blot assay. Cell counting kit-8 assay and wound-healing assay were conducted to investigate the biological functions of MIR-382 in CRC. RESULTS: In this study, we found MIR-382 expression was downregulated in CRC tissues and cell lines, and the transfection of MIR-382 mimic decreased cell growth and migration. Furthermore, we identified SP1 was a direct target of MIR-382. Overexpression of MIR-382 decreased the expression of SP1, whereas MIR-382 knockdown promoted SP1 expression. We also observed an inversely correlation between MIR-382 and SP1 in CRC tissues. Additionally, we showed that knockdown of SP1 inhibited cell growth and migration and attenuated the effect of MIR-382 inhibitor on cell behaviors. CONCLUSIONS: In conclusion, the present study describes a potential mechanism underlying a MIR-382/SP1 link contributing to CRC development. Thus, MIR-382 may be able to be developed as a novel treatment target for CRC.


Assuntos
Humanos , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Fator de Transcrição Sp1/metabolismo , MicroRNAs/fisiologia , Transfecção , Neoplasias Colorretais/patologia , Regulação para Baixo , Movimento Celular , Fator de Transcrição Sp1/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Invasividade Neoplásica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA