Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2004 Dec; 42(12): 1177-85
Artigo em Inglês | IMSEAR | ID: sea-57258

RESUMO

Isolated azide resistant (AzR) native R. ciceri strain 18-7 was resistant to sodium azide at 10 microg/ml. To find if nif-reiteration is responsible for azide resistance and linked to superior symbiotic nitrogen fixation, transposon (Tn5) induced azide sensitive mutants were generated. Using 4 kb nif-reiterated Sinorhizobium meliloti DNA, a clone C4 that complemented azide sensitivity was isolated by DNA hybridization from genomic library of chickpea Rhizobium strain Rcd301. EcoRI restriction mapping revealed the presence of 7 recognition sites with a total insert size of 19.17 kb. Restriction analysis of C4 clone and nif-reiterated DNA (pRK 290.7) with EcoRI and XhoI revealed similar banding pattern. Wild type strain 18-7, mutant M126 and complemented mutant M126(C4) were characterized for symbiotic properties (viz., acetylene reduction assay, total nitrogen content, nodule number and fresh and dry weight of the infected plants) and explanta nitrogenase activity. Our results suggested that azide resistance, nif-reiteration, and superior symbiotic effectiveness were interlinked with no correlation between ex-planta nitrogenase activity and azide resistance in R. ciceri.


Assuntos
Cicer/microbiologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Mutação , Fixação de Nitrogênio , Rhizobium/efeitos dos fármacos , Azida Sódica/farmacologia , Simbiose
2.
Indian J Exp Biol ; 2001 Jan; 39(1): 90-4
Artigo em Inglês | IMSEAR | ID: sea-56788

RESUMO

Total microbial count was highly affected (up to 61% at 1000 micrograms level) in presence of hexaconazole and persisted up to 21 days. Bacteria were more susceptible than actinomycetes. Carbofuran and ethion were moderately toxic to soil microflora. Inhibitory effects of all the three pesticides gradually decreased after 21 days as was evident by increase in total microbial count except in carbofuran. GDH activity in soil was also affected initially (up to 14 days) by all the three pesticides (60.3% in hexaconazole at 1000 micrograms level) and inhibition gradually decreased to zero except in carbofuran (15-20% toxicity persisted up to 35 days). GDH and LDH activity in presence of hexaconazole was strongly affected in intact cells of some standard culture of bacteria like Rhizobium sp. (host Dolichos sp., 32.1 and 72.5%), Bacillus subtilis Cohn (86.75 and 76.5%), Azotobacter sp. (36.9 and 55.4%) and B. sphaericus (67.6% GDH) respectively. Carbofuran inhibited the enzyme activity in B. subtilis (55.55 and 35.3%) and to some extent in B. sphaericus. Ethion moderately inhibited LDH activity in Rhodococcus sp. AK1 (17.1 and 33.3%), Rhizobium (27.6% LDH), E. coli HB 101 (34.2% LDH) as evidenced by formazan formation. From the result, it might be concluded that among the above three pesticides tested hexaconazole strongly inhibited the dehydrogenase system in bacteria including nitrogen fixing bacteria of soil and thus may affect soil fertility. It was concluded that hexaconazole was more toxic than ethion to dehydrogenase enzymes.


Assuntos
Bacillus/efeitos dos fármacos , Carbofurano/farmacologia , Compostos Organotiofosforados/farmacologia , Oxirredutases/metabolismo , Rhizobium/efeitos dos fármacos , Microbiologia do Solo , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA