Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 106(7): 794-801, Nov. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-606641

RESUMO

Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.


Assuntos
Animais , Cromatina/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Desacetilases/metabolismo , Schistosoma/efeitos dos fármacos , Cromatina/metabolismo , Desenho de Fármacos , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Schistosoma/enzimologia
2.
Mem. Inst. Oswaldo Cruz ; 101(supl.1): 307-312, Oct. 2006. tab, graf
Artigo em Inglês | LILACS | ID: lil-441264

RESUMO

Available evidence suggests that the antischistosomal drug oxamniquine is converted to a reactive ester by a schistosome enzyme that is missing in drug-resistant parasites. This study presents data supporting the idea that the active ester is a sulfate and the activating enzyme is a sulfotransferase. Evidence comes from the fact that the parasite extract loses its activating capability upon dialysis, implying the requirement of some dialyzable cofactor. The addition of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) restored activity of the dialyzate, a strong indication that a sulfotransferase is probably involved. Classical sulfotransferase substrates like beta-estradiol and quercetin competitively inhibited the activation of oxamniquine. Furthermore, these substrates could be sulfonated in vitro using an extract of sensitive (but not resistant) schistosomes. Gel filtration analysis showed that the activating factor eluted in a fraction corresponding to a molecular mass of about 32 kDa, which is the average size of typical sulfotransferase subunits. Ion exchange and affinity chromatography confirmed the sulfotransferase nature of the enzyme. Putative sulfotransferases present in schistosome databases are being examined for their possible role as oxamniquine activators.


Assuntos
Animais , Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Schistosoma/enzimologia , Esquistossomicidas/farmacologia , Sulfotransferases/metabolismo , Resistência a Medicamentos , Ativação Enzimática/efeitos dos fármacos , Sulfotransferases/administração & dosagem
3.
Mem. Inst. Oswaldo Cruz ; 96(suppl): 29-33, Sept. 2001. ilus
Artigo em Inglês | LILACS | ID: lil-295876

RESUMO

In schistosomiasis, granuloma formation to parasite eggs signals the beginning of a chronic and potentially life-threatening disease. Granulomas are strictly mediated by CD4+ T helper (Th) cells specific for egg antigens; however, the number and identity of these T cell-sensitizing molecules are largely unknown. We have used monoclonal T cell reagents derived from egg-sensitized individuals as probes to track down, isolate and positively identify several egg antigens; this approach implicitly assures that the molecules of interest are T cell immunogens and, hence, potentially pathogenic. The best studied and most abundant egg component is the Sm-p40 antigen. Sm-p40 and its peptide 234-246 elicit a strikingly immunodominant Th-1-polarized response in C3H and CBA mice, which are H-2k strains characterized by severe egg-induced immunopathology. Two additional recently described T cell-sensitizing egg antigens are Schistosoma mansoni phosphoenolpyruvate carboxykinase (Sm-PEPCK) and thioredoxin peroxidase-1 (Sm-TPx-1). In contrast to Sm-p40, both of these molecules induce a more balanced Th-1/Th-2 response, and are relatively stronger antigens in C57BL/6 mice, which develop smaller egg granulomas. Importantly, Sm-p40 and Sm-PEPCK have demonstrated immunogenicity in humans. The findings in the murine model introduce the important notion that egg antigens can vary significantly in immunogenicity according to the host's genetic background. A better knowledge of the principal immunogenic egg components is necessary to determine whether the immune responses to certain antigens can serve as indicators or predictors of the form and severity of clinical disease, and to ascertain whether such responses can be manipulated for the purpose of reducing pathology


Assuntos
Humanos , Animais , Camundongos , Antígenos de Helmintos/imunologia , Ovos , Schistosoma/imunologia , Esquistossomose/imunologia , Linfócitos T/imunologia , Anticorpos Monoclonais/imunologia , Granuloma/diagnóstico , Granuloma/imunologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/imunologia , Schistosoma/enzimologia , Esquistossomose mansoni/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA