Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2002 Oct; 40(10): 1110-20
Artigo em Inglês | IMSEAR | ID: sea-55951

RESUMO

Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.


Assuntos
Elementos de DNA Transponíveis , Isoleucina/metabolismo , Leucina/metabolismo , Medicago sativa/microbiologia , Mutagênese , Sinorhizobium meliloti/genética , Simbiose , Valina/metabolismo
2.
Indian J Exp Biol ; 2002 Oct; 40(10): 1121-30
Artigo em Inglês | IMSEAR | ID: sea-57475

RESUMO

Twenty one cysteine and 13 methionine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5. The cysteine auxotrophs were sulfite reductase mutants and each of these auxotrophs had a mutation in cysI/cysJ gene. The methionine auxotrophs were metA/metZ, metE and metF mutants. One hundred per cent co-transfer of Tn5-induced kanamycin resistance and auxotrophy from each Tn5-induced auxotrophic mutant indicated that each mutant cell most likely had a single Tn5 insertion. However, the presence of more than one Tn5 insertions in the auxotrophs used in our study cannot be ruled out. All cysteine and methionine auxotrophs induced nodules on alfalfa plants. The nodules induced by cysteine auxotrophs were fully effective like those of the parental strain-induced nodules, whereas the nodules induced by methionine auxotrophs were completely ineffective. The supplementation of methionine to the plant nutrient medium completely restored symbiotic effectiveness to the methionine auxotrophs. These results indicated that the alfalfa host provides cysteine but not methionine to rhizobia during symbiosis. Histological studies showed that the defective symbiosis of methionine auxotrophs with alfalfa plants was due to reduced number of infected nodule cells and incomplete transformation of bacteroids.


Assuntos
Cisteína/metabolismo , Elementos de DNA Transponíveis , Medicago sativa/microbiologia , Metionina/metabolismo , Mutagênese , Sinorhizobium meliloti/genética , Simbiose
3.
Indian J Exp Biol ; 2001 Apr; 39(4): 371-7
Artigo em Inglês | IMSEAR | ID: sea-62902

RESUMO

Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.


Assuntos
Medicago sativa/metabolismo , Microscopia Eletrônica , Mutagênese , Fixação de Nitrogênio , Raízes de Plantas/metabolismo , Pirimidinas/metabolismo , Sinorhizobium meliloti/genética , Simbiose
4.
Indian J Exp Biol ; 2000 Oct; 38(10): 1041-9
Artigo em Inglês | IMSEAR | ID: sea-62607

RESUMO

Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.


Assuntos
Aminoácidos/metabolismo , Elementos de DNA Transponíveis , Medicago sativa/microbiologia , Mutagênese , Sinorhizobium meliloti/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA