Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 43(12): 1160-1166, Dec. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-569007

RESUMO

The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.


Assuntos
Animais , Masculino , Ratos , Câmaras gama/veterinária , Coração , Rim , Modelos Animais , Tomografia Computadorizada de Emissão de Fóton Único/veterinária , Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagens de Fantasmas , Ratos Wistar , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
Braz. j. med. biol. res ; 42(8): 692-699, Aug. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-520790

RESUMO

Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.


Assuntos
Animais , Desenho Assistido por Computador , Imageamento Tridimensional/veterinária , Modelos Biológicos , Tomografia Computadorizada de Emissão de Fóton Único/veterinária , Aumento da Imagem , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA