Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Journal of Veterinary Science ; : 235-244, 2012.
Artigo em Inglês | WPRIM | ID: wpr-65170

RESUMO

Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase (PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved post-ischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3beta, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3beta inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3+), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3beta. Furthermore, SIC was abrogated by wortmannin and Gd3+. In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3+ pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC.


Assuntos
Animais , Masculino , Ratos , Androstadienos/farmacologia , Gadolínio/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/farmacologia , Precondicionamento Isquêmico Miocárdico , Lítio/farmacologia , Maleimidas/farmacologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosfatidilinositol 3-Quinase/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
2.
Clinics ; 64(3): 245-252, 2009. graf
Artigo em Inglês | LILACS | ID: lil-509430

RESUMO

BACKGROUND: Acute myocardial infarction is associated with tissue inflammation. Early coronary reperfusion clearly improves the outcome but may help propagate the inflammatory response and enhance tissue damage. Cyclooxygenase-2 is an enzyme that catalyzes the initial step in the formation of inflammatory prostaglandins from arachidonic acid. Cyclooxygenase-2 levels are increased when ischemic cardiac events occur. The overall function of COX-2 in the inflammatory process generated by myocardial ischemic damage has not yet been elucidated. GOAL: The objective of this study was to determine whether a selective cyclooxygenase-2 inhibitor (rofecoxib) could alter the evolution of acute myocardial infarction after reperfusion. METHODS AND RESULTS: This study was performed with 48 mongrel dogs divided into two groups: controls and those treated with the drug. All animals were prepared for left anterior descending coronary artery occlusion. The dogs then underwent 180 minutes of coronary occlusion, followed by 30 minutes of reperfusion. Blood samples were collected from the venous sinus immediately before coronary occlusion and after 30 minutes of reperfusion for measurements of CPK-MB, CPK-MBm and troponin I. During the experiment we observed the mean blood pressure, heart rate and coronary flow. The coronary flow and heart rate did not change, but in the control group, there was blood pressure instability, in addition to maximal levels of CPK-MB post-infarction. The same results were observed for CPK-MBm and troponin I. CONCLUSION: In a canine model of myocardial ischemia-reperfusion, selective inhibition of Cyclooxygenase-2 with rofecoxib was not associated with early detrimental effects on the hemodynamic profile or the gross extent of infarction; in fact, it may be beneficial by limiting cell necrosis.


Assuntos
Animais , Cães , Masculino , /uso terapêutico , Lactonas/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Sulfonas/uso terapêutico , Pressão Sanguínea , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Frequência Cardíaca , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/enzimologia , Troponina I/sangue
3.
Saudi Medical Journal. 2008; 29 (1): 23-29
em Inglês | IMEMR | ID: emr-90038

RESUMO

To elucidate the expression of epoxygenases belonging to cytochrome P-450 mono-oxygenases [CYP2] family in rat ischemic myocardium at varying reperfusion periods, and the effect of epoxygenase inhibition on the post-ischemic heart. The current study was conducted in the Department of Pharmacology, Medical College of Wuhan University, China, between September 2004 and June 2005. Rats were subjected to 40 minutes of myocardial ischemia, followed by 0, 15, 60, and 180 minutes of reperfusion. Superoxide generation was assayed by confocal microscopy, CYP2B1/2, 2C6, 2E1, 2J3 gene expressions were determined by reverse transcriptase polymerase chain reaction. Fourteen, 15-dihydroxyeicosatrienoic acid [DHET] concentration was measured by enzyme-linked immunosorbent assay. The effects of the CYP epoxygenase inhibitor N-methylsulphonyl-6-[2-propargyloxyphenyl] hexanamide [MS-PPOH] on myocardial damage and superoxide generation caused by 60 minutes of reperfusion were also evaluated. During myocardial ischemia/reperfusion, CYP2C6 and 2J3 mRNA expression were up-regulated with the peak level at 15 minutes of reperfusion; CYP2E1 gene expression decreased in a time dependent manner and reached the minimum level at 180 minutes of post-ischemia. Meanwhile, no obvious variations of CYP2B1/2 gene expression were detected during different reperfusion periods. Fourteen, 15-DHET significantly increased during reperfusion in ischemic hearts. The MS-PPOH pretreatment [15 mg/kg] effectively reduced myocardial damage and superoxide production. There are changes in gene expression of individual isozymes and an elevation of CYP epoxygenase activity involved in myocardial reperfusion injury in vivo. Epoxygenase inhibition plays a protective role in cardiac post-ischemic damage


Assuntos
Masculino , Animais , Traumatismo por Reperfusão Miocárdica/enzimologia , Oxirredutases/metabolismo , Sistema Enzimático do Citocromo P-450 , Ensaio de Imunoadsorção Enzimática , Ratos Sprague-Dawley , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA