Your browser doesn't support javascript.
loading
miR-182 modulates cell proliferation and invasion in prostate cancer via targeting ST6GALNAC5
Bai, Liang; Luo, Li; Gao, Weicheng; Bu, Chenfeng; Huang, Jianfeng.
  • Bai, Liang; The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University. Department of Urology. Guangzhou. CN
  • Luo, Li; The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University. Department of Urology. Guangzhou. CN
  • Gao, Weicheng; The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University. Department of Urology. Guangzhou. CN
  • Bu, Chenfeng; The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University. Department of Urology. Guangzhou. CN
  • Huang, Jianfeng; Peoples Hospital of Liannan Yao Autonomous County. Department of Urology. Qingyuan. CN
Braz. j. med. biol. res ; 54(8): e9695, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249332
ABSTRACT
Altered expression of miR-182 has been observed in various types of human cancer. The purpose of this study was to investigate the expression of miR-182 and its role in prostate cancer (PCa). Expression of miR-182 and ST6GALNAC5 in tumor tissues and the Du145 PCa cell line was analyzed. Cell proliferation assay, colony formation assay, transwell assay, and wound healing assay were performed. The impact of miR-182 on tumor growth was investigated using a xenograft model. The results indicated that expression of miR-182 was higher in PCa tissues and cell lines, while ST6GALNAC5 was decreased. Downregulating miR-182 significantly inhibited the capacities of proliferation and invasion of PC3 and Du145 cells. ST6GALNAC5 was demonstrated to be a target of miR-182 by luciferase assay, and western blot results indicated PI3K/Akt pathway was involved in miR-182 associated effects on PC3 and Du145 cells. The animal experiment suggested that knockdown of miR-182 inhibited tumor growth. Our study proved that miR-182 participated in the proliferation and invasion of PCa cells via mediating expression of ST6GALNAC5 and established a miR-182/ST6GALNAC5/PI3K/AKT axis in regulation of tumor progression. Our investigation provided a basis for further exploration of the application of miR-182 or ST6GALNAC5-associated therapies for PCa patients.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Prostatic Neoplasms / MicroRNAs Limits: Animals / Humans / Male Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2021 Type: Article Affiliation country: China Institution/Affiliation country: Peoples Hospital of Liannan Yao Autonomous County/CN / The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University/CN

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Prostatic Neoplasms / MicroRNAs Limits: Animals / Humans / Male Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2021 Type: Article Affiliation country: China Institution/Affiliation country: Peoples Hospital of Liannan Yao Autonomous County/CN / The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University/CN