Your browser doesn't support javascript.
loading
Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation
Sartori, Giselle Pacifico; Costa, Andréa da; Macarini, Fernanda Lúcio dos Santos; Mariano, Douglas Oscar Ceolin; Pimenta, Daniel Carvalho; Spencer, Patrick Jack; Nali, Luiz Henrique da Silva; Galisteo Jr, Andrés Jimenez.
  • Sartori, Giselle Pacifico; University of São Paulo. Institute of Tropical Medicine. Laboratory of Protozoology. São Paulo. BR
  • Costa, Andréa da; University of São Paulo. Institute of Tropical Medicine. Laboratory of Protozoology. São Paulo. BR
  • Macarini, Fernanda Lúcio dos Santos; Butantan Institute. Anaerobic Vaccines Section. São Paulo. BR
  • Mariano, Douglas Oscar Ceolin; Butantan Institute. Laboratory of Biochemistry and Biophysics. São Paulo. BR
  • Pimenta, Daniel Carvalho; Butantan Institute. Laboratory of Biochemistry and Biophysics. São Paulo. BR
  • Spencer, Patrick Jack; Nuclear and Energy Research Institute. Biotechnology Center. São Paulo. BR
  • Nali, Luiz Henrique da Silva; Santo Amaro University. São Paulo. BR
  • Galisteo Jr, Andrés Jimenez; University of São Paulo. Institute of Tropical Medicine. Laboratory of Protozoology. São Paulo. BR
J. venom. anim. toxins incl. trop. dis ; 27: e20200140, 2021. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1250256
ABSTRACT
Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. Methods Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. Results Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. Conclusion Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.(AU)
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Radiation, Ionizing / Tetanus / Enzyme-Linked Immunosorbent Assay / Gamma Rays Language: English Journal: J. venom. anim. toxins incl. trop. dis Year: 2021 Type: Article Institution/Affiliation country: Butantan Institute/BR / Nuclear and Energy Research Institute/BR / Santo Amaro University/BR / University of São Paulo/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Radiation, Ionizing / Tetanus / Enzyme-Linked Immunosorbent Assay / Gamma Rays Language: English Journal: J. venom. anim. toxins incl. trop. dis Year: 2021 Type: Article Institution/Affiliation country: Butantan Institute/BR / Nuclear and Energy Research Institute/BR / Santo Amaro University/BR / University of São Paulo/BR