Your browser doesn't support javascript.
loading
Edaravone improves the post-traumatic brain injury dysfunction in learning and memory by modulating Nrf2/are signal pathway
Li, Xiushan; Yu, Jing; Ma, Dongzhou; Weng, Xuehui.
  • Li, Xiushan; Affiliated Hospital of Hebei University of Engineering. Department of Neurosurgery. Handan. CN
  • Yu, Jing; Affiliated Hospital of Hebei University of Engineering. Department of Neurosurgery. Handan. CN
  • Ma, Dongzhou; Affiliated Hospital of Hebei University of Engineering. Department of Neurosurgery. Handan. CN
  • Weng, Xuehui; Affiliated Hospital of Hebei University of Engineering. Department of Neurosurgery. Handan. CN
Clinics ; 76: e3131, 2021. graf
Article in English | LILACS | ID: biblio-1350610
ABSTRACT

OBJECTIVES:

To investigate the molecular mechanism of edaravone (EDA) in improving the post-traumatic brain injury (TBI) dysfunction in learning and memory.

METHODS:

In vitro and in vivo TBI models were established using hydrogen peroxide (H2O2) treatment for hippocampal nerve stem cells (NSCs) and surgery for rats, followed by EDA treatment. WST 1 measurement, methylthiazol tetrazolium assay, and flow cytometry were performed to determine the activity, proliferation, and apoptosis of NSCs, and malondialdehyde (MDA), lactic dehydrogenase (LDH), and reactive oxygen species (ROS) detection kits were used to analyze the oxides in NSCs.

RESULTS:

Following EDA pretreatment, NSCs presented with promising resistance to H2O2-induced oxidative stress, whereas NSCs manifested significant increases in activity and proliferation and a decrease in apoptosis. Meanwhile, for NSCs, EDA pretreatment reduced the levels of MDA, LDH, and ROS, with a significant upregulation of Nrf2/antioxidant response element (ARE) signaling pathway, whereas for EDA-treated TBI rats, a significant reduction was observed in the trauma area and injury to the hippocampus, with improvement in memory and learning performance and upregulation of Nrf2/ARE signaling pathway.

CONCLUSIONS:

EDA, by regulating the activity of Nrf2/ARE signal pathway, can improve the TBI-induced injury to NSCs and learning and memory dysfunction in rats.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Antioxidant Response Elements / Brain Injuries, Traumatic / Edaravone / Learning Type of study: Prognostic study Limits: Animals Language: English Journal: Clinics Journal subject: Medicine Year: 2021 Type: Article Affiliation country: China Institution/Affiliation country: Affiliated Hospital of Hebei University of Engineering/CN

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Antioxidant Response Elements / Brain Injuries, Traumatic / Edaravone / Learning Type of study: Prognostic study Limits: Animals Language: English Journal: Clinics Journal subject: Medicine Year: 2021 Type: Article Affiliation country: China Institution/Affiliation country: Affiliated Hospital of Hebei University of Engineering/CN