Your browser doesn't support javascript.
loading
Synthesis of New Thiazole Derivatives Bearing Thiazolidin-4(5H)-One Structure and Evaluation of Their Antimicrobial Activity
Evren, Asaf Evrim; Yurttas, Leyla; Gencer, Hülya Karaca.
  • Evren, Asaf Evrim; Anadolu University. Faculty of Pharmacy. Department of Pharmaceutical Chemistry. Eskisehir. TR
  • Yurttas, Leyla; Anadolu University. Faculty of Pharmacy. Department of Pharmaceutical Chemistry. Eskisehir. TR
  • Gencer, Hülya Karaca; Anadolu University. Faculty of Pharmacy. Department of Pharmaceutical Microbiology. Eskisehir. TR
Braz. J. Pharm. Sci. (Online) ; 58: e19248, 2022. tab, graf
Article in English | LILACS | ID: biblio-1384018
ABSTRACT
The first report about antimicrobial resistance was published in the 1940s. And today, the antimicrobial resistance has become a worldwide problem. Because of this problem, there is a need to develop new drugs. That's why we synthesized some novel thiazolidine-4-one derivatives and evaluated their antimicrobial activity. The final compounds were obtained by reacting 2-[(4,5-diphenylthiazol-2-yl)imino]thiazolidin-4-one with some aryl aldehydes. The synthesized compounds were investigated for their antimicrobial activity against four Candida species, five gram-negative and four gram-positive bacterial species. The lead compounds (4a- h) were obtained with a yield of at least 70%. All compounds showed antimicrobial activity. Compound 4f (MIC 31.25 µg/ml) exhibited more efficacy than the other compounds against C. glabrata (ATCC 24433). Compound 4b (MIC 62.5 µg/ml) was the most active compound against all bacterial species, particularly K. pneumoniae (NCTC 9633). Whereas, compound 4c (MIC <31.25 µg/ml) was observed as the most active compound against E. coli (ATCC 25922). In general, all compounds (4a-4h) showed antimicrobial activity against all fungi and bacterial species. Compounds 4b (2,6-dichlorobenzylidene), 4c (2,6-dihydroxybenzylidene), 4f (1H-pyrrol-2- yl)methylene), 4g (4-triflouromethylbenzylidene) and 4h (2,3,4-trimethoxybenzylidene) were determined as the most active compounds
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Azoles / Thiazoles / Candida / Thiazolidines Language: English Journal: Braz. J. Pharm. Sci. (Online) Journal subject: Farmacologia / Terapˆutica / Toxicologia Year: 2022 Type: Article Affiliation country: Turkey Institution/Affiliation country: Anadolu University/TR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Azoles / Thiazoles / Candida / Thiazolidines Language: English Journal: Braz. J. Pharm. Sci. (Online) Journal subject: Farmacologia / Terapˆutica / Toxicologia Year: 2022 Type: Article Affiliation country: Turkey Institution/Affiliation country: Anadolu University/TR