Your browser doesn't support javascript.
loading
Oxidative stress in sepsis. Possible production of free radicals through an erythrocyte-mediated positive feedback mechanism
Oliveira, Yanaihara Pinchemel Amorim de; Pontes-de-Carvalho, Lain Carlos; Couto, Ricardo David; Noronha-Dutra, Alberto Augusto.
  • Oliveira, Yanaihara Pinchemel Amorim de; Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador. BR
  • Pontes-de-Carvalho, Lain Carlos; Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador. BR
  • Couto, Ricardo David; Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador. BR
  • Noronha-Dutra, Alberto Augusto; Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador. BR
Braz. j. infect. dis ; 21(1): 19-26, Jan.-Feb. 2017. tab, graf
Article in English | LILACS | ID: biblio-839186
ABSTRACT
Abstract

Background:

Sepsis is an illness with a high morbidity for which no effective treatment exists. Its treatment has a high cost because it usually requires an intensive care unit and expensive antibiotics. The present study focus in the production of reactive oxygen species in the early stages of sepsis. This study aimed at investigating the production of reactive oxygen specie during the inflammatory response in patients with sepsis.

Methods:

Reactive oxygen specie production and insoluble myeloperoxidase obtained from fresh whole blood were measured by photon counting chemiluminescence in the blood of 18 septic patients and 12 healthy individuals. Modified red blood cells were evaluated by staining of blood smears. The production of reactive oxygen species by macrophages and polymorphonuclear leukocytes put into contact with modified red blood cells were also assessed by photon counting chemiluminescence.

Results:

The appearance of oxidatively modified erythrocytes, which is an evidence of oxidative stress, was supported by the detection of reactive oxygen species and insoluble myeloperoxidase in the whole blood of all septic patients. Peroxynitrite was the main reactive oxygen species found in the whole blood. Oxidatively modified erythrocytes activated phagocytic cells in vitro, leading to the considerable production of free radicals.

Conclusion:

It was found that sepsis led to a high oxidative stress and to extensive modification of erythrocytes. It is proposed that a positive feedback mechanism, involving the activation of circulating leukocytes by these modified erythrocytes would maintain the pro-oxidative state even after the disappearance of bacteria.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Reactive Oxygen Species / Sepsis / Oxidative Stress / Erythrocytes Type of study: Observational study Limits: Adolescent / Adult / Aged / Child / Female / Humans / Male Language: English Journal: Braz. j. infect. dis Journal subject: Communicable Diseases Year: 2017 Type: Article Affiliation country: Brazil Institution/Affiliation country: Fundação Oswaldo Cruz/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Reactive Oxygen Species / Sepsis / Oxidative Stress / Erythrocytes Type of study: Observational study Limits: Adolescent / Adult / Aged / Child / Female / Humans / Male Language: English Journal: Braz. j. infect. dis Journal subject: Communicable Diseases Year: 2017 Type: Article Affiliation country: Brazil Institution/Affiliation country: Fundação Oswaldo Cruz/BR